
ADAI2B857 ADIANA-DRIVEN PRETTYPRINTERORADAM TARTAN LABS 1;
INC PITTSBURGH PA K J BUTLER ET AL. 22 FEB 83 TL-83-3

MDA903-82-C 0148
UNCLASSIFIED F/G 9/2 NL

mEIIEIIIEIIEEE
EIIhEIhIIEEEEE
IIIIIEEEIIEEI

EEllhEEEElllhE .. 7.

n1.0 Lo In, =8
* 1-25 1. 16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

QD.0o LAORATOUIES 3~RAXfhw

- 0

A DIAA-DmvE PRETT-PRINTER FOR ADA

Kenneth J. Butler
Arthur Evans Jr.

Prepared for

Ada Joint Program Office
801 North Randolph Street

t Arlington Virginia 22203

Contract Number MOA903-S2-C-0148

Prepared by

>TARTAN Laboratories Incorporated

477 Melwood Avenue=.. , ..o, ,....DTIC
C. Pittsburgh PA 15218 EL C€. II ELECTE I

LU1983 February 22 JUN 2 1983S.D
The effort which Is reported herein was performed by Tartan Laboratories Inc.
for the Ada Joint Program Office of the Department of Defense under contract
number MOA9O$-82-C-0148 (expiration date: 28 February 1983). The Project
Director for Tartan Laboratories Is Arthur Evans. Jr.

The views. opinions, and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense
position, policy, or decision, unless designated by other official documentation.

I DISTRI ON STATEMENT A

DtId Uulimitod

st~eurv CLASSIFICATION OF nT1S PAGE9 (fts o.s Es atwe)

REPORT DOCUMENTATION PAGE.RA NV CIN
I. REPORT NMSIR1 ja.VT ACC90ION NO 3. RECIPIENT'S CATALOG "UNDER

T1. 83-3 A FNr~~ 17
4. TITLE (and iabjlfs L TYPE OF REPORT & PERIOD COVERED

Ll Contract deliverable 0002AD
11. PERFORMING ORo. REPORT NUMMER

A DIANA-DRIVEN PRETTY PRINTER FOR ADA
7. AIJTIOR(s) I. CONTRACT OR1 GRANT NUMUERI')

Kenneth J. Butler, Arthur Evans Jr. MDA93-82-C-0148
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Tartan Laboratories Inc. AE OKUI UUR

477 Heiwood Ave.
Pittsburgh PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 193Fab2
801 North Randolph Street 13. NUMBER or PAGES
Arlington VA 22203 viii +- 108
1.MONITORING AGENCY NAME 6 AOORESSJI different from Cooling Offic) IS. SECURITY CLASS. (ofId thiorPohf)

1610S FeeralBuilingUnclassified
100 Liert AvnueIse. OECL ASSI FICATION/ OOWNGRAOING
Pitsbugh A 1222SCHEDIU LE

DISTRIBUTIlON STATEMENT A
Apptoved ioi public r.eesi;I; Diotibution Unlimited.

I?. DISTRIBUTION STATEMENT (of th. abstract entered In Block 20, It differenit from Report)

IS. SUPPLEMENTARY NOTES

Is. KEY WORDS (Continue. an reverse side If neoinpa and Identify by block anonlor)

Diana, Ada, programming language, pretty-printer

20. AUIIST PACT (Coninue on revere side it necesayan d identity by block number)
The design of a program PrettyPrint whose function is to pretty-print Ada
programs is described. PrettyPrint takes as input a Diana representation
of an Ada program. The intent of the design was to stress the Diana design.

DO ~~'~I 173 STIM OPI NV61IS SSOETEUnclassified

SECURITY CLASSIFICATION Of THIS PAGE (When Date En *re$

siecua I CLAU~ncAIras or Tufs VAW(Nb 24" so*

ISCUA"TV CLASPIAON OF TIhS PA6UtWP.. Dee. hem.*

Table of Contents Page I

TABLE OF CONTENTS

Abstract 1

Preface 3

1. Introduction 5

1. 1. Goals of the Design of PMTrPRINT 5
1. 1.1. Non-Compiler Application 5
1. 1. 2. Exercise the DIAA Package 6

1.2. Design Overview 7
1.2.1. The Main Program 7
1.2.2. The DINA Structure 9

1.2.2. 1. The Package Diana 9
1.2.2.2. 1OL and Refinements 12
1.2.2.3. The Package PPOlana 12

1.2.3. The Package WALKI is
1.2.4. The Package WALK2 13
1.2.5. The Package FORMAT 15

1.3. Observations about D0A 17
1.3.1. Handling ADA Comments 16
1.3.2. DIANA Normalizations 20
1.3.3. Diana Problem Areas 21

1.4. Comments about the Design 22

1.4. 1. Formatting Decisions 22
1. 4.2. Assumptions Made in the Design 22
1.4.3. Missing Parts of the Design 23
1.4.4. ADA as a Program Design Language 23

1.5. Comments about this Document 24

2. Source ReconstrucIon 27

2.1. General Treatment of Nodes 28
2.1.1. Simple Example 30

2.2. Anomalies 32
2.2. 1. Label Identifiers 33
2.2.2. Task Types 35
2.2.3. Subprogram Declarations 35
2.2.4. Blocks 36

2.3. Comments 39

3. Formatng 43

3.1. Classical Formatting Problems 43
3.1.1. Indentation 44
3.1.2. Une Break* 45
3.1.3. Usts and Sequences 4?
3.1.4. Comments 4?
3. 1.5S. Whitspac* 49
3. 1.6. Page Layout 49

Page II A Pretty-Printer for AoA

3.1.7. Use of Fonts 49
3.2. Solutions So

3.2.1. Solving Indentation 50
3.2.2. Solving Line breaks 51
3.2.3. Solving Usts and Sequences 52
3.2.4. Solving Comments 52
3.2. 5. Solving WhiteSpace and Page Layout 53
3.2.6. Solving Use of Fonts 53

3.3. Package "FORMAT" 54
3. 3.1. Output Support Operations 5633.1.1. Procedure AddText 56

3.3.1.2. Procedure ResForm 573.3.1.3. Procedure ldentForm 57
3.3.1.4. Procedure ComForm 583.3.1.5. Procedure NewUne 583.3. 1.6. Function Remaining and Function Position 58

3.3.2. Indentation Stack Operations 583.3.2. 1. Procedure SetIncrement 593.3.2.2. Procedure Indent 59
3.3.2.3. Procedure Undent 59
3.3.2.4. Procedure Setindent 60

3.4. Use of Format Operations s0

4. Recreating Formatted Source 63

4. 1. IOL Refinement of DAA 63
4.1.1. Operations on PPOlana 66

4.2. The First Tree Walk -- WALX1 68
4.2.1. Subunit Walkl 70
4.2.2. Nest: Nesting Constant Array 714.2.2.1. Practical Considerations In Nest 72
4.2.3. Char: the Character Count Constant Array 72

4. 2. 3. 1. Practical Considerations In Char 73
4.2.4. Nodewalk 74
4.2. 5. Ustwalk 76

4.3. Second Tree Walk to Generate Formatted Text 78
4.3.1. Use of DIANA Operators 79
4.3.2. Example WALK2 Subunits 794.3.2.1. Label Identifiers -794.3.2.2. Task Types 80

A. FirM Traversal 83
A. 1. Package Specification 83
A. 2. Package Body 84
A. 3. Subunits 85

S. Second Traversal 87
a. 1. Package Specification 87

Table of Contents Page III

8. 2. Package Body 87
B. 3. Subunits 96

C. O Refinement of OW for Pretty Printing 97

0. Format Control 107

D. 1. Package Specification 107

I

Accession For
NTIS QRA&I
DTIC TAB

Unannounced 0
Justifioatio

_Dl stributipon/

Availability Codes

4,Avail and/or
Dist Special

.4-.

Page Iv A Pretty-Printer for ADA

Ust of Figures Page v

UST OF FIGURES

Figure 1-1: Top Level ADA Modules 8
Figure 1-2: Sketch of the DIANA Package 11
Figure 1-8: Outline of Package Body WALK1 14
Figure 1-4: Package FORMAT Specification 16
Figure 2-1: Procedures To Reconstruct id-s Node 34
Figure 2-2: Procedure To Recreate Type Declarations 35
Figure 2-3: Procedures To Recreate A Subprogram Declaration 37
Figure 2-4: Procedures for Reconstructing Blocks 40
Figure 8-1: FORMAT Package Specification 55
Figure 4-1: Example of I0L Refinement 65
Figure 4-2: IDL Process Specification of PrettyPrint 87
Figure 4-3: PP-OIANA Operations 67
Figure 4-4: Package Walk1 Specification And Body 69
Figure 4-5: Walkl Subunit 70
Figure 4-6: Procedure Nodewalk 75

I: Figure 4-7: Procedure Ustwalk 77

LA

Ab~ractAbstract / Page 1

ABSTRCT

The design at a program PREMFPRINT whose function is to pretty-print ADA
programs Is described. PRETTYPRINT takes as Input a DIANA representation of an
ADA program. The Intent of the design was to stress the DIANA design.

Preface / Page 2 A Prtty-Printer for ADA

4 .

Preface Preface / Page 3

PREFACE

As part of Its efforts In support of the ADA1 programming language, the ADA
Joint Program Office (AJPO) Is deeply Involved with the production of tools that
will support ADA programmers. An ADA Programming Support Environment
(APSE) Is Intended to Include a rich collection of tools such as compilers.

editors. pretty-printers, cross-reference generators, verifiers, and so on, to
assist the programmer using the APSE and to ease the difficult task of creating

the complex software required for DoO applications.

Early In the design of ADA compilers, the contractors Involved chose DIANA as
the notation to be used for communication between the components of the

compilers they were building. DIANA Is an abstract data type. designed with the 4

Intention that any object of the type represents all the Information In an ADA

source program, along with the results of lexical analysis. syntax analysis. and

static semantic analysis. Further. AJPO has long realized that ADA is not the

proper lingua franca to be used as a means of communication between the tools

In an APSE and that DIANA is In fact an excellent notation for the purpose.

DIANA. like ADA. did not spring forth perfect from the pens of its creators.

ADA has had the benefit of a long process of Informed feedback from Interested

computer specialists to bring to Its present state of excellence; DIANA requires

similar nurturing and care for It to grow Into a mature tool that properly meets

the widely varying needs of Its user community. AJPO has therefore contracted

with TARTAN Laboratories to maintain DIANA and to Improve It.

One Issue which we at TARTAN have addressed In this effort has been to

determine DIANA'S suitability for an application other than a compiler. Although

DIANA's original design contemplated such non-compiler applications, essentially

all of the existing experience has been with compilers, so only compiler applica-

tions have had the opportunity to Influence DiANA's continual development. Thus

we have designed a program named PRETIYPRINT which Is a pretty-printer for ADA

that uses as Input a D~ representation of an ADA program. It Is the design of

PRETTYPRINT that Is described In this document.

Aft oa registered Tredemark of te Ads Joint Program office. Department of Defense, United
gbfte GOWMmef.

Preface / Page 4 A Pretty-Printer for ADA

A pretty-printer, a tool that belongs In the tool chest of any group writing

large amounts of code. enforces standards of layout on the page of programs

written In the language. in the usual case. the pretty-printer reads one version

of the program to be formatted and writes a new version. properly formatted.

However. In an environment such as an APSE.- It Is more appropriate for the

pretty-printer to take as Its Input a DIANA representation of an ADA program.

rather than textual ADA.

It Is Important for the reader to keep In mind that the purpose of the design

has been to exercise various aspects of DIANA, and not to build a better

pretty-printer. This point is addressed more fully In Section 1. 1 of this docu-

ment.

This document assumes that the reader Is familiar with the programming

language ADA. as It Is defined In Draft Revised MIL-STD 1815, the ADA Language

Reference Manual dated July 1982 (21. It also assumes knowledge of DIANA as

defined In the DIANA Reference Manual (hereafter referred to as the DRM) dated

February. 1983 (1).

The work reported herein has been supported by the ADA Joint Program Office

under contract MOA903-82-C-0148. We thank AJPO for supporting the DIANA

revision effort of which the the design of PRETlYPRINT Is a part. We thank In

particular Lt. Colonel Larry Oruffel. the director of AJPO. Valuable assistance as

Contracting Officer's Technical Representative was provided first by

Lt. Commander Jack Kramer and later by Lt. Commander Brian Schaar: we are

pleased to acknowledge them.

Introduction Chapter 1 / Page 5

CHAPTER 1

INTRODUCTION

This report presents the design of PRETTfPRINT. a program designed to accept

as input a DIANA representation of an ADA program and to produce as output a

properly formatted textual version of the same AOA program.

This Introductory chapter contains In succeeding sections the goals of the

PRETTPRINT design project, an overview of the design. some comments about

DiANA, some comments about the design of PRETTYPRINT. and an overview of the

rest of the document.

1. 1. Goals of the Design of PREITYPRINT

As stated in the Preface, the purpose of this design exercise has not been to

investigate pretty-printers as such but rather to test and stress various aspects of

the design of DIANA. Thus the design has been strongly influenced by the two

goals of Investigating DIANA'S suitability for a non-compiler application and of

stressing the design of the DIANA interface package. We have regarded these

goals as being so important that we have sacrificed considerations of elegance of

design and of efficiency and compactness in order to achieve them. They are

considered in detail In the next two subsectlons.

1. 1. Non-Compiler Application

The primary purpose for this design has been to exercise DIANA in an

application domain other than a compiler. Most current users of DLANA employ It

In compiler writing. However, Inasmuch as DIANA was Intended also to be a

useful intermediate form for many of the tools to be found In an APSE, it is

Imperative that Its design be stressed by using It In such an application.

PRETTYPRINT Is clearly one non-compiler tool that uses DIANA.

Crucial to the use of DIANA for driving any tool such as PRETTYPRINT is the

OmIA design principle (presented in Section 1.1.1 of the DAM1) that DIANA must

pr'serve the structure of the original source program. Our success In designing

1A@ @ed in the Prefoe, we un ORM to retr to the Oin Reference Manuel.

Section 1.1.1 / Page 6 A Pretty-Printer for ADA

PmRMPRuT has made It adequately clear that the source structure Is preserved.

1. 1. 2. Exercise the DIANA Package

PRErTP*I T should exercise the D~ package. Since DW4A Is an abstract

data type. for which many possible concrete representations can be dmi.ed in

any reasonable programming language. defining a specific concrete represen-

tation in ADA Is a practical Idea. In ADA such a definition would consist of a

package whose specification contains

" the relevant type definitions (some private), and

" specifications of subprograms to access objects of the type.

The body of the package would contain the bodies of those subprograms and.

likely, other types and subprograms.

Chapter 4 of the DRM contains the public part of a specification for such a

package, named Diana; the private part of the specification and the package

body are missing. The design of PRETTYPRiNT described herein is specified by
using ADA as a Program Design Language. 2 with the Intention that the Implemen-

tation will be written In ADA using that package.

The designers of the Olana package provided two distinct methods for travers-

ing DA structures. As a deliberate policy, this design uses both such ways so

as to Insure that both are properly designed and adequate for the purpose.

* The first tree walk. WALKI. uses the general tree traversing opera-
tions: ARITY, SON1. etc. The function ARITY applied to a DIANA
node returns the structure of the node. which is (essentially) the
number of offspring of the node. The SONk subprograms then
provide access to the relevant offspring. These operations permit a
program to traverse a tree structure without taking specific cognizance
of the nature (other than number of offspring) of each node
traversed.

* The second tree walk. WALK2, uses the attribute-specific operations
such as AS.ACTUAL. ASALIGNMENT. etc. In this method, on
reaching a node one must determine (with function KIND) the nature
of the node, and then use the appropriate attribute-accessing func-
tions to explore the children.

The Intent has been to test the adequacy of the design of package Diana.

2The uae at Artas a Program Design LangUage (PIt) Is diaoued In Section 1.4.4 on page 23.

Introduction Section 1.1.2 / Page 7

As It turns out. we found It appropriate for this project to augment DIANA. In a

manner anticipated in the ORM. Thus the package used here is PP10_Oana.

rather than Diana of Chapter 4 of the ORM. See Section 1.2.2.3 on page

12 of this document for details of what was done and why.

1.2. Design Overview

We have found It convenient to think separately about two aspects of pretty-

printing: reconstruction. and formatting. The first aspect involves reconstructing

the characters that make up the source text. without concern for how the

characters are to be laid out on the page: the second aspect Involves making all

decisions concerning page layout and then carrying them out. Although this

distinction Is often useful in the discussions in this document. It turns out that It

is not very apparent In the code itself, whose modularity Is designed from a

different viewpoint.

All of PRETTYPRINT's work Is performed by the three major modules of the

program: WAL(1. WALK2. and FORMAT. described briefly In the following sub-

sections and then In more detail in the rest of this report. Part of the structure

of the so-called *main program" and the specification parts of modules WALKI

and WALK2 are shown In Figure 1-1 on page 8: the specification of FORMAT is

in Figure 1-4 on page 16. The modules are listed in the order in which they

are discussed In this chapter: of course. they would have to be presented to an

AOA compiler In a different order.

Entries in the package PP.DIana are used for all accessing of the DIN~

structure: this package Is described In Section 1.2.2 on page 9.

1.2.1. The Main Program

For the sake of convenience, we have assumed a main program. here the

procedure Main. which is called somehow by 'the operating system'. a concept

not further discussed. We show only that part of Main that calls the routines

that perform pretty-printing.

We assume that a specific Instance of a DIANA structure is specified as being

the one to be pretty-printed, again via some rmeans not here discussed, The

otherwise-unspecified function GotPP_Tree returns this structure. it is important

to note that the program as written assumes that the tree returned is one whose

Section 1.2.1 / Page 8 A Pretty-Printer for ADA

- fmin progim. Amme that this is called by "the operating system".

wIth OClt.09.ree; ume GetEft;ee - function that reads W.Diana
with _D1.ianai ume PPMana; - DIANA package, for pretty printi g
wIth WMJ W.LK2; - routines to walk the trees

m.aamdze Min Is - min proqrm
TS - DIANA tree to be pretty-printed

- Negotiate with user to determine specific tree to be printe".
T :- et-j"_reee(...)j - The tree to be printed is in '.
ISmdCX .11C(m;) - perform first walk

VIM1 IMK(Y); - performt second walk

- Packaqe to perform the first walk over the tree.

with PP.._Diana; se PPDina; DIANA package, for pretty printing

- ,~z~clIs
_ooedke WRIAIC(T: in out 'VM),

end waci

- Package to perform the scond wmalk ower the tree.

with PP.i.lana; -s 91...Ianag; DIANA package, Eor pretty printing

UUM isC~
imRM(Ts in TIM);

Figure 1-1: Top Level ADA Modules

(1

Introduction Section 1.2.1 / Pogo 9

type is PP,-DIane. Tree. and not Diana. Tree . There are of course other pos-

sibltlties for acquiring the program's input, such as the following:

* The program could acquire (somehow) a structure of type Diana. Tree
rather then P_Diane. Tree. and then invoke a suitable subprogram to
transform It to the desired type.

e if the DIANA structure to be pretty-printed exists in DIANA external form.
the DIANA reader that transforms external DIANA Into internal might be
modified to create the additional attributes, though without values.

a WALKI could be reformulated to take an in argument of type
Diana. Tree and produce an out argument of type PPDlana. Tree.

We do not pursue this point further as it is not relevant to the purpose of tho

project.

Procedure WALKX is called with one argument: a tree of type PP..Diane, Tree.

It walks over that structure and modifies it. calculating and storing values for

certain attributes specific to pretty-printing.

Next procedure WALK2 walks over the resulting tree, emitting the desired

output as it goes. It calls entries In package FORMAT to perform storing of

output. All formatting decisions are made In WALK2.

1.2.2. The DIANA Structure

As suggested above. the Input to the program is not an object of type

Diane. Tree but rather one of type PP._Diana. Tree. The distinction between these

is now presented. Section 1.2.2.1 describes first the ADA package Diane. the

package described In Chapter 4 of the DRM. Next Section 1.2.2.2 addresses
the Issues Involved in using IOL to describe a new structure In terms of one

already defined. Finally, In Section 1.2.2.3 the special version of DIAN

relevant to pretty-printing is presented.

1.2.2. 1. The Package Diana

Chapter 4 of the DRM provides the specification part of an ADA package that
provides access tn a concrete representation of DIANA. Omitting most details, a

1T1ta didimi b derleleg in 8oeIi. 1.2.1

Section 1.2.2.1 / Page 10 A Pretty-Printer for ADA

sketch of the package is shown in Figure 1-2 on page 11. It defines and

makes available the following names:

type TREE An object of this private type is a node of the DA
structure.

type SEQTYPE An object of this private type is a sequence of nodes of the
same class.

type NODE-NAME This Is an enumeration type providing an enumeration literal
for each kind of DIANA node.

functon MAKE This function creates and returns a DIANA node of the kind
which is its argument. Note that It is overloaded so as
also to be able to create an empty list.

procedure DESTROY
This procedure Indicates that a node is no longer required.

function KIND Given a node, this function returns Its node-kind.

type ARITIES This enumeration type provides a literal for each number of
structural children a node might have.

function SONk For k = 1. 2. 3. each such functlon returns the Aim
offspring of a node.

procedure SON For k - 1. 2. 3. each such procedure stores a new kth

offspring of the node.

list processing A collection of functions and procedures implement the
usual list-processing primitives.

attributes For each possible attribute, there Is a function to return the
value of that attribute at a node. and a procedure to store
a new value for the attribute.

Although subprograms MAKE and DESTROY just listed and subprograms INSERT

and APPEND mentioned In Figure 1-2 are not used by program PRETTPNNT. for

completeness they are listed In this discussion.

4p e adsW of eMpletsn, the beta~ sevra SbUgm that 'we net Used by
Pr'e~lt.Sues aebpreirama we IMW appear tWme, voade) OEThY SISR am

k6 - 11

Introduction ection 1. 2. 2.2 / Page II

3sDiana Is
tipe Tre is prlte; - a Diana node
tPe UoTPE Is Private; - squenoe of nodes

type iM0_w is - enerat ion class for node names
()... - about 160 different node tyes

Tae constructors.
fsucton XWE (ci in NODEJIAII) return TRES;
peoceiuze DEWIY (ts in TMR);

f tion Km (to in TREE) return NOOXWE;

Tree traversera from the Afa Formal Definition.

type ARITIES i (nullary, unary, binary, ternary, arbitrary);

unction ARY (t s In TREE) return ARIES;
fnctioa 80111 (to in TREE) return TRE;

soedmure awl (to in out TE vs in TREE);
funtio m0 (t iTR return TREE;
Prcedure io I.Ts ut TREE; v--s TRE)s
fuction 8013 (t iTR return T E
VVGC.dUre 8M3 (t: in out TREE: in TEE)o

- Handling of Lift constructs.
function CRD (1: in EQLTYPE) return TREE; - LISP CAR
function TRIL (I s n - ...TTP) return 8EQ...?!PE - Lisp CDR
function 1141M return SBQ..TyPE;

- return emty list
funtin IS...DNf (1t In SEQ...TMP) return DOOLEAM
fkatam IM8M (It In cut SZQ...TYPR;

is In TT4) return SEQ...TTPE:
- inserts i at start of I

funtion APPEND (It In out S8E0TT13:
is in TM) return BECLT. ;

- inserts i at end of 1

- Handling of LIST attribute of list constructs.
M'''2Z LIST (to i In t TMfh vts ISEg..TY!PE);

ntion LIST (t in TM) return SALT!PE;

- tructural Attributes.

pcomd 3 C (tt in out TREE; vs InT);
function An...WURL (t: in TREE) return T : - aoc

followed by functions and procedures for about 100 attributes

piat@

To be tilled in...

ad Diana;

Figure 1-2: Sketch of the DwA Package

Section 1.2.2.2 / Page 12 A Pretty-Printer for ADA

1.2.2.2. IOL and Refinements

D~$N Is defined in a notation called IDL 14). a notation designed expressly for

describing structures to be used as interfaces between software components.

The designers of IOL foresaw that users of an abstract type (such as OMDA)

might require another abstract type that was almost the same as the first, but

slightly different. IDL therefore provides the concepts of refinement and derive-

tion. methods for defining such a structure by listing only the differences from

some already defined IDL structure.

Details about refinements and derivations are to be found In Section 2. 3 of

the IOL Reference Manual [4). However, enough Information about the concept

for present purposes may be found in Appendix II of the DRM, In which the

Abstract Parse Tree (APT) Is defined by derivation from the Dw structure.

Derivation is a more general process than the refinement used here. as derive-

tion permits both additions and deletions whereas refinement permits only

additions.

1.2.2.3, The Package PPnDlena

For the purposes of the design of PETPRNT, It is useful to have three

additional attributes at some of the nodes. These provide a place to record

data gathered during the first tree walk so that they are available during the
second.

In the present case. we define a new abstraction. PP_,Dlane. by refinement

of DIANA. This new type is like DIANA but has added to it three new attributes,

listed below. Then the ADA package PP._DIana Is just like the ADA package Diane

except that the enumeration type NODENAME contains three new names and

there are three new functions and three new procedures to deal with the new

attributes.

The three new attributes are as follows:

ppchars This attribute holds the number of characters required to
print the complete ADA structure at the node and its des-
cendents. The computation Ignores all considerations of
formatting. assuming that all the code fits on one line and
that lexemes are separated (when necessary) by a single
space.

pp..maxchars Present on any node that Is a list. this attribute holds the
maximum number of characters required to print any ele-
ment of the list. The calculation follows the same conven-

Introdu tion Section 1.2.2.3 / Page 13

tlons as for pp..chars.

pp.jndent This attribute holds the total number of extra indentation
levels required to print this node. For all leafs the value Is
zero. For a procedure body. for example. It Is one
greater than the maximum required for any declaration.
statement. or exception in the body.

A complete listing of the refinement that specifies PP..0ana is in Appendix C.

1.2.3. The Package WALKI

Note from Figure 1-1 on page 8 that the package WALK1 makes available

externally only a single procedure. also named WALKI. This procedure walks

over the structure that is its input, calculating and storing values for the three

attributes that are needed by prlTYPINT. as described In the preceding section.

The process is described in detail in Section 4.2 on page 68.

it computes and stores at each nods the Indentation level required to print

that node. based (essentally) on the nesting depth of such ADA control struc-

tuves as packages and procedures and compound statements whose bodies are

Indented from the surrounding text.

it computes and stores at each node the number of characters required to

print the node. ignoring formatting requirements. These data are needed for the

second pass over the tree producing output.

For each sequence node (I.e.. a DIANA Seq of' node). it computes and

stores the maximum number of characters required by any element of the

sequence.

The body of WALKI. considered in detail in Section 4.2 on page 68. consists

of first some declarations of Inteost. then functions and procedures to do the

work. and finally the body of procedure WALK,. A sketch of the package body

for WALKI is In Figure 1-8 on page 14. The pass walks the tree using the

general tree traversing operations of the package PP-DIANA.

1.2.4. The Package WALK2

Package WALK2. like package WALKI. exports only a single procedure.

AgaIn. It Is a procedure that performs a single walk over the structure. Proce-

dure WALK2 walks over the tree. calling entries In package FORMAT to perform

Section 1.2.4 / Page 14 A Pretty-Printer for ADA

-Package to perfor the firSt walk over the tree.

bode ~y Waali is

Son.Count i aarV'za nge unary .. ternary;

Nests oontotut ara (NOW:JAWon:LCoufl) of NATURAL
,- (...);

Char s constant arway (NODCENIAE) of NATURAL
z- (..)I

function MmX X: in NATURAL; Y: in NATURAL)
rWtumW NATURAL is Separate,

pcedure Lis-Walk:(Node s in out IREE
Depth t out XNTUJALI
lrnqth i out NATURAL;
NaxLengt s out NATURAL);

lprocedue ModeValk(ode : In oust TRES,
Depth t out NATURAL;
Lenh out NATRAL);

procedure tLlkL(T: I1u 09t TREE) IS Separate;

u LixetIalc(ode : in out TRE;
Depth s out NATURAL;

xianth t ot NARAL) sspaae

Depth toUt NItURALI
Length t Out NATURAL) inSeparate,

Figure 1-8: Outline, of Package Body WAULK

output. Ali formatting decisions are made In WALK2.

The structure of WALX2 Is similar to that of WALK1, although there are many

more functions and routines. It Includes the line

wth FONU; u-e FONI;

to provide access to the subprograms in package FORMAT that Interface to the

output. This pass. unlike the previous one. uses the specific attribute accessing

operations from package PP,.DIANA to traverse the tree.

Details about this process are found In Section 4.3 on page 78.

Introduction Section 1.2.5 / Page 15

1.2.5. The Package FORMAT

The formatting decisions made in WALK2 are Implemented by calling entries In

package FORMAT. The specification of package FORMAt Is In Figure 1-4 on
page 16. Typical formatting decisions Include when to break a line, how many
spaces to indent a new line, and so on.

FORMAT maintains a buffer into which to collect together a line of characters

for outputting.

Because line indentation Is such an Important concept in pretty-printing.
FORMAT provides considerable services for It. it maintains a stack of Inden-
tations, and at any moment each line produced Is indented by the number of

spaces shown at the top of the stack. Entering a program area (such as a
procedure body) requiring additional Indentation Implies pushing a new entry onto
the stack, using the procedure Indent: leaving such a scope requires calling

Undent to pop the stack.

The Indentation stack Is used also to deal with overflow lines. For example,
suppose a statement Is about to be printed which cannot fit on the line. (Code
in WALK2 knows how much space is required to print the statement from the

ppchars attribute on the statement node. and It knows how much space remains
on the line by calling function Remaining in FORMAT.) In such a case the
FORMAT entry Setindent is called to set Indentation as appropriate for the extra

characters of the statement.

With this background In mind. here is a brief description of each external
entry into package FORMAT. The term Indentation constant rafers to the fixed
amount each nested region of text is indented beyond the surrounding region.

constant UneLength
This Is the number of characters In the output line.

type Column An object of this type Is an Integer between zero and
LlneLength.

function Position This function returns the position on the line of the next
character to be stored.

function Remaining
This function returns the number of available characters on
the line. (it Is always LineLength - Position.)

Seflon 1.2.5 / Page 16 A Pretty-PrInter for ADA

Package that: provides operations to format: reconstructed Ada, surce

LineA~ hi
cstant POSTIVE :- 120; - length of the output line

t~eColumn Is
range O..LinerLnqth; - position on the line

S- Thre are tour procedures to append text to the output buffer

er AddText(Texti in String);I prcedue MForm. - add Ada reserved words
(Texts in String);

procedure ConForm - add corints
(Text: In String);

There are two function to return status of the output buffer

function Mmaining ratur Column; - unused characters in buffer

function Position return Column; - used characters in buffer

- this procedure creates a line break

procedure NewLine;

- this procdure sets the indentation increment

procedure Setlncrement(Depth: in POSITIVE);

- three procedures provide indentation operations

procedure Indent; - incr mnt from last indentation
procedure (ndent; - revert to previous indentation
procedure SetIndent(Poes in Column);

- et indentation to Poe

Figure 1-4: Package FORMAT Specification

Introduction Section 1.2.5 / Page 17

procedure Indent
This procedure pushes onto the indentation stack the next
standard Indentation. That Is. It pushes a number that
exceeds the last entry by the Indentation constant.

procedure Setindent
This procedure pushes its argument onto the indentation
stack.

procedure Undent
This procedure pops the indentation stack, restoring the
indentation to the previous value.

procedure NewLine
This procedure finishes the current line and outputs It. and
then stores the indentation for the next line.

procedure AddText
This procedure is used to store text Into the output.

procedure ResForm
This procedure is used to store a reserved word Into the
output. It formats the word as appropriate. For example.
reserved words might (as In this document) be printed with
boldface type.

procedure ComForm
This procedure Is used to store comments Into the output.
formatting words as appropriate. For example. comments
might be printed with Italic type.

procedure IdentForm
This procedure is used to store a programmer identifier Into
the output.

1.3. Observatons about D~

In this section we record some observations we have made about DIANA during
the course of this design. It Is these comments that are the principal output
from this study. With the exception of the point raised In the net subsection

concerning DIANA's handling of ADA comments, we have concluded that OIAHA'S

design. as stressed by the design of PRETYPRINT. Is adequate.

Section 1.3. I / Page 18 A Pretty-PrInter for ADA

1. 3. 1. Handling ADA Comments

The design of PRETTYPRiNT has revealed a serious problem In DIANA'S handling

of comments In the ADA text. Obviously this problem Is of no concern to writers

of compilers and most other tools In APSE. since It affects only tools which are

concerned with the exact placement of comments In ADA source text. Nonethe-

less. It Is a problem which requires a solution.

The problem Is that there is not an adequate way to determine the correct

piece of ADA source text with which to associate a comment. It Is Instructive to

note how this problem arose in our design effort. As outlined In Section

3.1.4 on page 47, PRETTYPRINT'S handling of comments Is rather poor. At first

we felt that we were doing poorly because we had given the problem Inadequate

attention5 . However, on further reflection we realized that PRETTYPRINT cannot

possibly put the comments 'where they belong' because It has no way of

knowing where In fact they do belong.

To a first approximation, the problem Is that PRETTYPRINT has no way to know

how the creator of the DIANA placed the comments. However, the real problem

Is that there exist no comment-placement standards to be obeyed by DIANA

creators. Even more seriously, there are sensible places In ADA text at which to

place comments for which there is no DIANA node to which to attach the

comment.

To see these problems, consider the following example of ADA code. The

A0A code was copied directly from one of the examples In Section 6. 1 of the

ADA LAM and then reformatted and commented to make several points:

- - (1] Print a header.
PRINT_HEADER - C2] It is called whenever ...

(- (3] Its parameters are ...
PAGES t in NATURAL: - [4] number of pages
HEADERs in LINE - [5] the line to print

t- (1..LINE'LAST -> " ");
CENTER: In BOOLEAN - (6) center it?

:- TRUE

(The numbers In . . serve to Identify the comments in the following

discussion.) Ideally. It should be possible for the compiler Front End (or other

DIN4A creator) to leave enough Information In the tree so that it would be

sit Is completely consistent with our design goals as described In Section 1.1 on pege 5 to give little
attenton to such a problem.

Introduction Section 1.3.1 / Page 19

possible for a program like PRETTYPRINT to recreate this program as here

displayed. For some of the comments. such as (4). [51 and (0), there Is no

problem In doing so--the comment could be the value of the Ix_comment at-

tribute on the In node that is the formal parameter. However, it does not

appear possible to find two different places In the structure for comments (2 and
[3). Also, PRETTYPRINr could not possibly know how to place comment (1) unless

It was aware of the conventions used in creating the DIANA.

Although this example Is perhaps slightly contrived, it suggests a real

problem. First, there exist programmers who might well write comments in the

style suggested here. Such a programmer who went to the trouble to insert

these comments would be properly dismayed to discover that they were unsatis-

factorily rearranged by tools In an APSE. Second, however, and much more

serious, tools are coming into existence which care very much how comments

are arranged.

One such tool is ANNA (31, a tool which permits a user to decorate an ADA

program with annotations which are recognized by an ANNA processor. Syntac-

tically. all such annotations are ADA comments and would be Ignored by any

conforming ADA compiler. However, an ANNA processor takes cognizance of

comments starting with *--:' or "--I'. Interpreting them as Input for certain
kinds of program analysis. Further details are not relevant here.

Although one could design an ANNA processor to take ADA text as Its Input.

such an approach Is Inconsistent with AJPO's Intent for tools in an APSE. It Is
much more appropriate for the tool to use Instead a DIANA representation of an
ADA program. However, because the placement of the special comments has

semantic Implications for ANNA. It could do so only If it were possible to derive

from the DIANA the original placement of AOA comments In the source program.

For such a tool to be transportable from one APSE to another with a different

ADA-tO-OIANA transformer, It is necessary that the ORM specify adequately the

details of placement of ADA comments in the DIANA tree.

Although our analysis of this problem In connection with building PRTTYPRINT

suggests that further DIANA design In connection with ADA comments is desirable,

the problems faced by the builder of a tool such as ANNA suggest that such

redesign Is required. As ADA matures and sophisticated tools of the type

suggested by ANNA become available for Inclusion in APSEs. It will become more

and more necessary to address and solve this problem.

Section 1.3.2 / Page 20 A Pretty-Printer for ADA

1.3.2. DIANA Normalizations

The DIANA Reference Manual. following the lead of the ADA Formal Definition.

uses the term normalization to refer to certain arbitrary decisions made In

constructing the DIANA representation that are. In effect, losses of Information.

For example. one may elect to Ignore case distinctions In the spelling of

reserved words and program identifiers. Some of these normalizations have an

Impact on source reconstruction. In the DRM. this topic Is introduced In Section

3.1.3 and then discussed at greater length In Appendix 1II. Section 3. The

present discussion Is keyed to the latter.

ADA permits an optional Identifier following the reserved word end In certain

contexts, such as a block body. subprogram body. and so on; if the Identifier Is

present. It must match an Identifier at the beginning of tite context. As there is

no provision In DIANA for recording whether or not this Identifier Is present. a

program such as PRETTYPRINI that does source reconstruction must either always

Include the labels or always omit them. We have chosen to Include them.

In formal parameter declarations for subprograms. the mode in Is optional

and Is not recorded In the DIANA. We have chosen always to Include It.

DIANA does not require that extra spaces between lexical tokens be preserved.

Variant spelling of an Identifier. as for example "FOO" and "Foo" and "fooe.

need not be recorded In DIANA.

Alternate writings of numeric constants need not be preserved. For example,

In

2 002 002
2t1111-1111 16*1*I 016010"* 255
12e1 1.2e2 0.12e+3 01.2e02

all the values on each line are represented identically in the DIANA and so are

reconstructed Identically. This Issue is essentially the same as the variant

speling of identifiers: DIANA does not require that variations be preserved.

One normalization present In ADA-80 is absent In AoA-82. the distinction

between an infix and prefix form of an operator. For example. In the earlier

version of DIANA based on AOA-80. each of

A+a ...

... "+r(A, 3) ...
is represented by the same structure. However, the conformance rules of

Introduction Section 1.3.2 / Page 21

ADA-82 as expressed in Section 6. 3. 1 of the ADA LRM require that the distinction

be preserved. For this reason, DIANA now has the boolean attribute sm..preflx to

record which was used. See Section 3. 3. 4 of the DRM.

1. 3.3. Diana Problem Areas

Although DIANA was designed to preserve the structure of the original source
program. and Indeed the design of PRErTTPRINT shows that the structure Is In fact

preserved. we discovered that there are some DIANA nodes that present special
problems. Generally, these are nodes where the source to be reconstructed

cannot be determined without knowing the context in which the node appears.

Attribute When an attribute6 appears as the description of the range
in a range constraint, the attribute should be preceded by
the ADA reserved word 'range': In all other cases the
attribute appears by itself.

Id-s When a sequence of Identifiers is the list of labels before a
statement. each identifier should be surrounded by the spe-
cial brackets '(< ">' and commas should not appear between
the identifiers: In all other cases the identifiers appear
without any bracketing and are separated by commas.

Task Type When a type declaration defines a task type, the AOA
reserved word *type' should be preceded by the ADA
reserved word "task': In all other cases there Is no text
precoding It.

Header When constructing the text for nodes In the class HEADER.
which corresponds to the header part of a function or
procedure declaration, It is necessary to have the name of
the subprogram, so that it can be printed in the decla-
ration. The identifier must be passed down from the parent
node.

Loop and Block When loop or block appear as the child of a namndstm
node (that is. a loopidentifter or blockIdentifler has been
specified). then the identifier must appear again after the
ADA reserved word "end" and before the semicolon. The
identifier must be passed down from the parent node. In
all other cases no identifier appears after 'end'. and there
is no identifier to be passed from a parent node.

%1 Ihe onteet, the term aM~flbut refers to en Ads attrbute (suOh m I110T). & not an ettribute
ot node In ODmW.

Section 1.3.3 / Page 22 A Pretty-Printer for ADA

Note that In all cases just discussed, Information needed for source

reconstruction Is not found exactly where it is needed. However, in all cases it

Is easy to code WALK2 so as to provide the Information. Alternatively, additional

attributes could have been defined where needed and calculated In WALKI.
However, the essential adequacy of D~ Is shown in that there are two

straightforward ways to deal with the problem,

1.4. Comments about the Design

Here are some observations of Interest about the design.

1.4. 1. Formatting Decisions

All decisions about how the ADA text Is to be formatted are. In effect.
'hard-wired' Into the code of WALK2. Largely, we have followed the lead of the

ADA LRM In deciding how to display ADA code.

Were our purpose to design a production pretty-printer, for example for
Inclusion In an APSE. we would have provided an Interface to let the user (or at
least the local system maintainer) to parameterize the layout. However, such

functionality, though c!early desirable, Is not relevant to the goals of the project

as described in Section 1. 1 on page 5.

1. 4.2. Assumptions Made In the Design

We have made certain assumptions In the design of PRETTYPNrT. assumptions

that the reader should be aware of.

We have consistently assumed that the DIA structure supplied Is correct.
An implementatfln might be made more robust by the addition of suitable

checking.

We have assumed that no token Is longer than the output line. It is not

clear In any case what to do If this assumption falls.

We have assumed that the nesting of the underlying program Is not *too

deep*. In the sense that excessive Indentation would leave not enough space on
a line for meaningful amounts of text. (Although the program does not fail In

any unpleasant way. Its treatment of the situation would not be suitable for a
production environment. See the discussion of procedure Indent In Section

3. 3.2 on page 58.)

Introduction Section 1.4.2 / Pago 23

We have assumed that characters are all of the same width.

We have assumed the existence of a function Length that determines of any

token (symbol. number or operator) the number of characters required to print

It. if the values of attributes Ix..ymrep and ix_numrep are strings, of course.

then the Implementation of Length Is quite simple.

1.4.3. Missing Parts of the Design

Certain parts of a complete pretty-printer design are missing from this docu-

ment. These omissions are all consistent with our limited goals as described In

Section 1. 1 and are recorded here merely for completeness.

A proper pretty-printer should encapsulate all the formatting decisions so as

to permit the user (or at least the system maintainer) to change the formatting

decisions. In the present design, all such decisions are embedded In the code

In WALKI. See Section 1.4.1 on page 22.

PRflErYPRW4Vs handling of comments Is quite weak. This fact reveals a

problem area In the design of 0IANA, discussed In Section 1.3. 1 on page 18.

It would be appropriate to recognize certain pragmas that control listing, such

as

pg list) - turn listing on or off

prg pae - eject paper

and perhaps others of our own design.

Page layout Is quite weak. Certain structures (such as subprograms) should

have surrounding white space. and there should be some control of where page

breaks occur.

1.4.4. ADA as a Program Design Language

An Interesting recent development In the ADA world has been the use of ADA

as a Program Design Language (POL). We have followed the lead of others In

doing so. As the technique Is not yet well specified. It seems In order to

explain Just what we have chosen to do.

ADA by the nature of its design separates the specification of a program from

Its definition (which In ADA terms Is the body). Taking advantage of this

Section 1.4.4 / Page 24 A Pretty-Printer for ADA

separation, we have provided complete package specifications for the various

modules of PRETmPINT. In addition. we have sketched the code that would go

Into the package bodies, with no attempt to provide all details. Our goal has

been to provide adequate detail to permit an Intelligent implementor to complete

the Implementation.

1.S. Comments about this Document

The remainder of this document specifies In detail the design (but not the

Implementation) of PRETrYPRINT. The major thrust of the technical presentation is

In the next three chapters. Chapter 2 presents In detail the issues involved In

source reconstruction. Ignoring temporarily the problem of formatting: and then

Chapter 3 addresses the issues involved In implementing pleasing formatting

decisions. Finally. Chapter 4 shows how the solutions to these two problems

are implemented.

Four appendices present details of the modules that carry out the work.

Appendices A and B discuss the two tree traverses, which are carried out In

packages WALK1 and WALK2. respectively. Appendix C discusses the changes
required In the DIANA structure to accommodate the needs of the pretty-printing
process. Appendix 0 discusses the AOA package FORMAT which implements the

formatting processes.

To aid the reader, consistent typographic conventions are adhered to In

referring to objects and syntactic types in ADA and DIANA. The conventions are

as follows:

Entity Convention

ADA reserved word beoIn end
ADA Identifier FORMAT TREEWALK
D~ A classes OBJECT._DEF TYPE
DIANA nodes constnt record
DIAN attributes Ix..rcpoa as_o/obctclde

Note the distinction between DIANA. the name of the abstract data type. and

Diana, the name of the ADA package.

Because we cite frequently certain literature relevant to ADA and DIAN, we

use consistently following abbreviations:

ORM The DIA Reference Manual. (11.

ADA LRM The ADA Language Reference Manual. [21.

j

Introduction Section 1.5 / Page 25

IOL The iDL Formal Description. [41.

Note that the version of the DRM cited Is the latest revision. There are changes

from earlier revisions that are significant to this document.

Sentlon 2 / Page 26 A Pretty-Printer for ADA

Source Reconstruction Section 2 / Page 27

CHAPTER 2

SOURCE RECONSTRUCTION

In presenting the PRETTYPRNT design. we consider separately two aspects of

pretty-printing: source reconstruction and formatting of the reconstructed source.

Although we make a clear-cut distinction In the discussions In this document. the

dichotomy Is blurred In the completed design, but is nonetheless present. For

the purposes of analyzing DIA In a new application domain, source reconstruc-

lion is the more important of the two aspects.

in this chapter we consider only the requirements for reproducing unformatted

ADA source. The formatting Issues Involved are discussed separately, In Chapter

S on page 43. The complete PRETTYPRINT design, Incorporating formatting Into

the source reconstruction. is elaborated In Chapter 4 on page 63.

One of the goals of the DIANA design Is the ability to reconstruct the ADA

source used to create an Instance of DIANA. This chapter Illustrates that this

goal Is met, with a small number of exceptions. The exceptions are normaliza-

tions that are necessary during reconstruction. These are described In Section

1.3.2 on page 20.

We make the following claim: unformatted ADA source can be reconstructed In

one poss over the MA tree. Furthermore. with one exception, the only

attributes necessary to reconstruct the source are the lexical (Ix) attributes.

which describe the representation of Identifiers. operators. and numeric Ilterals;

and the structural (as-) attributes. which describe the structure of the DIANA

tree.

The single semantic attribute. sm.prefix. Is required to differentiate between

infix and prefix uses of operators. This distinction Is required by the semantics

of ADA1. Without' this requirement. the form of all operators could be normalized

and source could be reconstructed without any semantic attributes.

The reconstruction pass can be performed with a simple recursive descent

tree walk. 'in general the text at a node is generated independently of its

1The oermne rules for defoult formal pa.smeters, Ads LFM Section 6.3.1 in psrtleuler, requr

U0 d-enim10GU.

Chapter 2 / Page 20 A Pretty-Printer for ADA

parents. and Includes the text for each of Its descendants In order (the few

exceptions, most notably subprogram.decls and task types are described In

Section 2.2 on page 32 below).

2.1. General Treatment of Nodes

In this section we show how pretty-printing might be done for some simpler

language. Our purpose Is to Illustrate the techniques used in PRETTPRWT to

pretty-print ADA. Suppose the Internal form of this simple language (analogous

to DM4A) has two types of nodes:

Inner nodes with structural attributes: In DIANA the only lexical
attributes associated with these nodes are Ix._srcpoa. source
position, and Ix_comments, the comment associated with
this node.

leaf nodes with no structural attributes; these nodes may have a
lexical attribute of Interest. In DIANA a leaf node may have
the attribute Ixaymrep or Ix..numrep. or may have no at-
tributes at all.

The canonical Inner node has one, two. or three descendants, accessed as

structural attributes. The IDL representation o a node with three offspring Is

inner a). childl : YPzl1,
child2 t TTZ2,
child3 : T 'E3j

To further the analogy, we assume the existence of a package similar to

package Diana that defines a type TREE such that leaf and inner nodes belong

to the type. In addition, this package provides functions ('operations" on type

TREE) that provide access to the structural attributes. For convenience we

name the functions In this package CHILDI. CHILD2. and CHILD3. Each of

these functions takes one argument. a node of type TREE. and returns a node

of type TREE that is the corresponding structural attribute of the node. Using

the ADA package TEXT-JO. as described In Section 14. 3 of the ADA LRM. the

canonical procedure for creating the source associated with this node would then

be:

Source Reconstruction Section 2.1 / Page 29

- st 'Lring -TezW' represents an arbitrary text string
p9mdue dp.nner(MNode: in TRES) is

dp_,.TTP1(CKID1(Node)),

W,,J,(-rInex")dp..T!_3(CHD2(Node))

dp...T!P3(CRIM3(ode)),
PM "Tmt3"),

ud pt.inner;

The procedures dpTYPE1. dpJTYPE2. and dpTYPE3 are procedures that

produce the text for nodes of the IDL type TYPE1. TYPE2. and TYPE3 respec-

tively.

In other words. the source text corresponding to any node is merely the

correctly ordered concatenation of some text strings inherent to the node

(TextO. "Textl. "Text2?. and "Text3") and the source text for its descendants

(the text produced by dpTYPEI. dp_TYPE2. and dp_TYPE3). Concatenation Is

achieved by correctly ordering the output operations. When we say that proce-

dure dp_TYPE1 produces text, we mean that the procedure uses the function PUT

to output text in the same manner that dp_Jnner does.

In practice. some of the text strings Inherent to a node are null.

If the IOL type denotes an IDL class, then It is reasonable to expect the

procedure that the class to simply dispatch processing depending on the kind of

node It receives. For example. if the IDL class TYPEI Is defined as

T :- ilnner I leaf ;

and there is a discriminating function. KINO, that operates on nodes of the

class. then the procedure dpTYPEI can be written.

Mamosdmne dp_..TYPRI(Nodes in TREK) in
begin

ase KN)(Node) is
%isen inner - dpinner(Node)j
i4m. leaf -) dp.leat(Node);

andCae;

and dp-TVPZl,

The procedure to handle nodes of a class can be optimized to do processing

for the nodes In that class If the nodes are sufficiently similar. I.e.. they share

similar attributes or generate the same text strings. For example. In DANA the

class 10 contains only nodes that represent Identifiers and all Identifiers are

reconstructed from the Ix.symrep attribute. We use this to advantage In Pret-

Section 2.1 / Page 30 A Pretty-Printer for ADA

tyPrint by processing all nodes in the class ID with a single procedure.

For nodes without descendants, the leaf nodes, a procedure similar to the

procedure for inner nodes Is used. Although there are no structural attributes.

we assume a lexical attribute. Ixtext. that contains text associated with the leaf.

Again. the existence of an accessing function. LX_TEXT that returns the value of

the attribute Is assumed.

Vzoosduzo dp.leaf(Node: in TREE) is

PM "Texto"),
PflILXT(Node));

end dp-leaf;

2. 1. 1. Simple Example

We now apply this technique to the reconstruction of ADA from DIANA. As an

example consider the DIANA node constant, which represents the declaration of a

constant object. The syntax for the declaration of a constant object In AoA

follows.

constant.object.declaration is-
identifierlist : constant ubtypeindication :- expression

I identifierlisti constant constrained_arraydefinition
: expression ;

The 0IAA node. constant, represents a constant object declaration. |
constant -, asalds t IDS,

as-type..spec t TTPESPEC,
aaobect-_det , O DJECT-D

Using the package Diana described In Chapter 4 of the DRM. which provides

the operations on the DIANA data type. we write the following procedure to

reconstruct the source for a constant declaration.

pocsxaz. ftpconstant(Node: in TR.EE) is
begin

dpIDS(ABID._S(Node)); - print identifier list
Put("t constant ");
dpTTE9_S3C(3_TYPESPEC(Node)); - print subtype
dpOsjUcT_DW(As_OWDECTF(Node)), - print It-, expression
Put(","),

end dp_constants

. I

Source Reconstruction Section 2. 1. 1 / Page 31

In other words, reconstructing the text for a constant object declaration

requires the following pieces of text to be concatenated:

" the Identifierlist; the text for the Identifier list Is created by a
procedure similar to dp.constant. one that operates on Ids nodes.

" a colon and the ADA keyword *constant' (note this Includes a space
after the word *constant').

" the subtype-indication; the text is created by a procedure that
processes the aa.type.spec child.

" the expression; the procedure processing the asobjectdet child
produces the text for the ': =" as well as the expression, and finally

" a semicolon to end the declaration.

For some level of completeness we consider the procedures to reconstruct the

source for two of the children of the node constant: as_ld_.s the identifier list;

and a_obldef. the object definition expression.

The identifier list Is a sequence of identifiers.

[D_3 : : id.

id.. 8> asJaist i Seq Of ID;

Sequences are handled using the DIANA operations LIST. HEAD, and TAIL. LIST

returns a value of type SEQ..YPE that is a sequence of IDL nodes. HEAD

returns the first node In the sequence and TAIL returns the sequence, possibly

empty. that remains after the first node is removed. ISEMPTY returns a

boolean value True when the sequence Is empty, (The procedure does not

begin with a check for an empty sequence as the ADA syntax does not permit an

empty list).

ptooedUe dp_id_s(1ode: in TRIM) is
Lz SEQ.TYPI; - ho do list not processed

L :- LIST(Node);
dpID(HEDL); - print the first Id
L t- TIL(L); - process the remaining
Wile not 13_EDIY(L)
loop

PUT(",")i - separate id's with ",
dp_ D% HE(L); - print neit id
L - TAIL(L); - process the remaining

and loop;
and dp..i& a,

The procedure dp-id.s Iterates over the sequence of nodes. For each node

Section 2.1.1 / Page 32 A Pretty-Printer for ADA

the procedure dpIO is called to process the leaf nodes that are the Identifiers.

Before each node (except the first) a comma is introduced, thereby separating

each identifier In the list with commas,

In presenting the procedure for dp-id.s we have simplified the treatment of

Identifier lists. In actuality the process is complicated by the fact the Identifiers

could be labe~lds. Sequences of labe~lds should not be separated by commas

(see Section 2.2.1 on page 33).

The object definition Is represented by a node In the class OBJ._DEF. The

nodes in this class are the nodes of the class EXP and the node void. Void

Indicates that no object definition appears in the declaration. Although the

object definition for a constant declaration may never be void. the node constant

!s also used to represent deferred constants. Deferred constant declarations

' have no object definition expression and DIANA represents this with a void node

as the aaobLdef child. The procedure to reconstruct the text must account for

this fact. In particular. it must assure that the *: = is not generated when the

object declaration Is absent.

The procedure to process the class OBJ_DEF is an example of processing for

an IDL class. The function KIND Is used to discriminate between nodes within

the class.

pjocedure dpOBJ.(DEP(Node: in TREE) in
Came KIND(Node) of

dnvoid -, null; - no object: definition
others -> Put("S-"); - all object defs begin with ".-

dpEXP(Node);
an case

eA dpOBJJ EF;

2.2. Anomalies

The procedures needed to describe the remaining DIANA nodes are generally

straightforward. The steps required to reconstruct most nodes can be deduced

from Chapter 2 of the DRM. However, there are some DIANA nodes for which

obvious solutions do not exist. In this section we discuss the implication of

these nodes and describe the processing necessary In order to reconstruct the

source for these nodes.

That we must treat certain nodes delicately to recreate the source does not

imply that DIANA In some way destroys the original source. On the contrary, the

Source Reconstruction Section 2.2 / Page 33

source Is reconstructable. We are merely pointing out the reconstructions that

may not be obvious to the casual observer.

2.2.1. Label Identifiers

The defining occurrence of a label identifier Is represented by the DIANA node

label_ld. The defining occurrence of a loop-name or block_name is also

represented by labelId. Not only Is there a semantic difference between the

two, there is a textual difference in how the identifiers are represented. The

label identifier should be enclosed in double brackets (',< W>) while the

bIockname should appear without the brackets. To solve this requires upmerg-

Ing the processing of the labelId into the nodes that can be its parent. As

there are only two such nodes, there is no great difficulty in doing this.

The node namedstm is used to represent named blocks and named loops,

The as_id son of this node will be a labeLid representing the name of the block

or loop. In this situation the processing of label-ld is no different that any

other identifier.

The node Id-s represents an identifier list. It Is also used to represent the

sequence of label identifiers preceding a statement. in the majority of contexts

the source is the concatenation of all the identifiers in the sequence, separated

by commas. However, when Id_s represents a sequence of label Identifiers. the

source Is the concatenation of the identifiers without commas and with each

identifier bracketed.

Since brackets around the labels occur only In the context of an identifier

list. It is logical to place decision logic for handling labels into the routine

processing the identifier list. The solution requires that 'he routine reconstruct-

Ing the Identifier list know which type of identifier appears In the list. The type

of an Identifier can be determined by using the Diana function KIND. Figure

2-1 on page 34 presents the two procedures needed to recreate the text for the

node Id_s. The first procedure recreates the text for all Identifiers, both used

and defining occurrences. and the second handles the sequence itself.

Procedure dpdd_s begins by printing the first Identifier In the sequence.

Because correct DIANA Is assumed, there Is no test for an empty Identifier list.

The procedure dpD is called to print the identifier. It the type of Identifier is

label-Id then the Identifier is bracketed. After producing the first Identifier.

dpld..s enters a loop to process the remaining Identifiers. A comma Is Inserted

Section 2. P.1 / Page 34 A Pretty-Printer for ADA

pz poeure for all nodes In class ID

09CON&IMz dp...ID(Mode: In TREE) is

- Mode should be In the IDL class iD
- All identifiers treated the sam,
- l-yarep contains the representation

begin
PUt(IJLSYNZ(Nod.)),

end IDI

proedre dp_.Label-id(Node: in TREE) is
begin

Put".'C);- label ids brac~keted by "c~
dpID(Node),
Put("3 >");

end dp..Labelid;

-procedure for node id~s

procedure 4dp..ts(Node: in TREEP) 15

M ode is an i&..s node

Seq: SEQ.TYPE, - local variable to hold the sequence

begin
Seq : - LINT(Node), - get the list of id nodes
if KCND(EADSeq)) - dn-labeliLd them

dpZabel id(RED(Seq));
elow

dp.D(HEAD(Seq)),
ad if
Seq :- TAIL(Node),
WAile not IS...DPff(Seq)

If KZIEAD(Se[)) - dn-label-iA then
dpmbeid(END(Seq))i

elmO
Put-, regular ids separated by ,

dp...ID HEMD Seq))s
ead if,
Seq :- T&IL(Node),

Ond dpId_*

Figure, 2-1: Procedures To Rleconstruct id-.. Ntoe

Source Reconstruction Section 2. 2. 1 / Page 35

before each of the remaining Identifiers If the Identifiers are not labels. If the
Identifier Is a label no comma Is Inserted and the Identifier Is bracketed.

2.2.2. Task Types

An ADA task type specification Is represented In OL~N by a type node whose

aajypeapec child Is a taskspec node. The node task...spec Is the only node
in the class TYPE..JPEC requiring text to be generated before the ADA reserved
word 'type*. The text generated for a task type declaration Includes the reserved
word "tasko.

taft tye gtypename. is etasek-.specification3.)

Every other type declaration begins with "type".

type 41ypenam. is (ttype....pecification32J

This problem requires that the procedure reconstructing the source for a type

node must Inspect the asjype-.apec. The procedure dpjlype Is shown In Figure
2-2.

pxoceduze dpType(Node: in TREE) is
begin

if KIND(AS..TYPE...PZC(Node)) - dn-a..sak-s..pec then
Put("task)

Put('type"),
dpID(A..ZD(Node)), - task identifier
dpyars(AM-yAR..(Node)) - diocriminanta
Put(" is ");
dp-TTPES1C(AIS-TYPES-PEC(Node)),

and dip..Type:

Figure 2-2: Procedure To Recreate Type Declarations

2. 2. 3. Subprogram Declarations

ADA subprogram declarations are represented by the node subprogram...dec.
This node has three attributes. The first. aa...dealgnator Is the subprogram

Identifier. The second. as~teader Is the subprogram header. The third Is used

for renaming and generics. the aa..,.ubprogram..Aef attribute.

Section 2.2.3 I Page 36 A Pretty-Printer for ADA

The second attribute references a node In the IDL class HEADER. The nodes

function and procedure belong to this class. Both nodes have an attribute,

aaparam_s which references the formal part of the subprogram declaration. In

addition, functlon has a as_namevold attribute which references the return type

of the function.

The nature of the subprogram.deci and HEADER nodes make It difficult to

reconstruct the source In one pass. Consider the reconstruction of the following

subprogram declaration.

p oceduze ProcID (parami: in TREE);

The declaration is represented by a subprogram-decl node. Knowledge of the

asheader child of this node Is needed to determine that the subprogram Is a

procedure. Then the asJd child is needed to recreate the subprogram iden-

tifier. Following the Identifier, the aa,_header child is needed again to recreate

the formal part of the declaration.

There are several methods for solving this problem. One is to use KIND to

determine the type of the aa_header child. Another method requires the routine

reconstructing the declaration to pass the identifier to the routine processing the

header. We illustrate the latter technique. Figure 2-3 on page 37 presents the

procedures needed to reconstruct a subprogram declaration. Procedure

dpSubprogram-decl processes the node subprogramdecl, procedure dpHEAOER

dispatches processing for nodes In the class HEADER. and dpProcedure

processes the node procedure.

Note that this treatment applies to subprogram bodies as well. The routine

reconstructing the text for the subprogram body must pass the identifier to the

procedure processing the as_header attribute.

2.2.4. Blocks

The node block is used in three different AoA contexts. It represents a block

statement. It also represents the block of a named statement. Lastly, block

represents the body of a subprogram. task. or package.

The block node has three structural attributes.

block aaJtems ITDLS, - declarations
as_s.tms : STLKS, - astatements
a8alternatlve..8 wrTEZ4MWWI VE - exception

The most straightforward block is a simple block statement. The text

Source Reconstruction Section 2.2.4 / Page 37

- process the node subprograa...decl

prom due dp._.ubproqramndecl(Nodes in TREE) in
be1a

- peas the header and id to the routine for the header
-LSY_,S return the text for the identifier

dpmaDR(ASHENDE Node), LSYDOMP(A.JSIGNATM Node)));
- process the subpro am.def child
dP...SU8P~OAaCDEV(&SSUBIGRILOEF(Node)),EJ I~utt ""),

end Op-.subprogras...decls

- Promes nodes in the clas HEADERi; it receives an input the

- node and the text fr the identifier

jro ure dpHIADZR(Nodet in TREE; Ident: in String) is

cease KIM Node) is
'~tsdnfunction -, dpunction(Mode,Ident);
%ten dn-procedure -3 dpprocedure(Node, Ident)j

~~ndn...entry -3 dp..entry(Node,ZdenI):
ftw case;

end 4p-jIAeR;

- process the node procedure; receives the node and the identifier

prceSdure dp.procedure(Nodes in TRE; Ident: in Strinq) In

Put("procedure ");
Put(Ident)p
dp...paras(AS..PARhkLS(fNode)); - foral part

end dpprocedure;

Figure 2-3: Procedures To Recreate A Subprogram Declaration

Section 2.2.4 / Page 38 A Pretty-Printer for ADA

generated by this node follows.

deolm

begIn

ca5.-altornative.%

Note that 'declare' Is only recreated when as.jtm...a Is not empty and
.exception' Is only recreated when as_alternatve..p Is not empty.

The situation is complicated slightly when the block statement Is named12.

The named block Is represented by the node named_atmn with a child, aa...tm.

that Is a block node. In this case the text for the block differs by the Identifier

after the block end.

declare

e"n-

<as_al1ternative...s
end <identifier)-;

In the final Instance. block Is used to represent the body of a subprogram.
package. or task. In this case the text associated with the block does not
Include the ADA reserved word 'declare' and the Identifier following the *end* 1s

optional (we have consistently chosen to Include ItD.

4subproqrau, package, or task specification.%
-as-iteq..s~

begin
4as-stxs3

4cas..alternative.p-
and 'identifier).1

We consider the processing for these three cases to be sufficiently different

to warrant treatment by three separate procedures.

- this handles block statements; it is passed the node blaft

pzooedure dp..block(Mode 2 in TREZ);

- this handles the named blocks; it is passed block and an
- the Identifier that should follow the end

2A slmfw prowinem at with named loop. The solution is analogous to the solution used for named

Source Reconstruction Section 2.2.4 / Page 39

yroosduze dpjlock(Modet in TREI Ident: In Shring);

this handles the sup ogran, lpackage, and tank bodies.

pzomduzs dp..blockstub(Nodez in TRME)l

The tirst two procedures are overloaded with the name dp..block. The first
procedure has as Its argument the block node. This creates the text for a block

statement. it is typically called by the routine that processes the STM class.

The second procedure receives two arguments: the block node and the
Identifier that names the statement. This procedure Is called only from the

routine that processes the node named-etm. It will generate the text for the

block and place the identifier after the reserved word 'end'.

The last procedure actually handles the class BLOCSTUB. There are only

two nodes In the class: block and stub. When the node Is stub the procedure

will generate the text 'is separate". When the node Is block it will generate the
text for the block without generating the reserved word 'declare*.

The bodies of the three procedures are shown In Figure 2-4 on page 40.

2.3. Comments

PIRET PRINT uses the simplest of commenting strategies. The algorithm used
prints the comment associated with a node after the text for the node has been
reconstructed. When creating comments in an unformatted text string the only

constraints are that the comment be preceded by 0--" and followed by an end of
line. If the comment extends over one line, each additional line must begin with

"--'m*This Issue is addressed In Section 3. 2. 4 on page 52 along with a
discussion of other constraints for producing comments In formatted source text.

All OLAN nodes related to the ADA source have the attribute Ixcomments.
This attribute records a comment. The type of the attribute Is the IOL private

type "comments'. We assume this type Is Implemented such that the function
Void will return the boolean True If the comment is empty. The treatment of

comments for all nodes Is the same. We create a single procedure to process

all comments.

Section 2. 3 / Page 40 A Pretty-Printer for ADA

p~voeftre dp...block(Nodes in TREE) in

if not IS...IT(LIST(AS..ITEDS(Node))) then
P'at("declare")s
dp...Item*(ASITfISS(Node)),

end if,
Put("begin");

if nt IS...DIT(LIST(AS...AV1TRNATIV&S(Node))) then

dp...Alternativesj(AS_...VPEDATIVE..S(Node));
and if;
Put(."end,"),

and dp..block,

ptoomiure dp..block(Node: in TREE, Ident9: in St:rinq) is
begin

if not IS-DWTY(LIS?(AS-r..ITL(Node))) then
Put("declaxe"),
dp...IteMs(ASITUS(Node))i

Ord if;
Put("begin"),

if not IS....DPTY(LIST(AS..AIPERNATrVZ.S(Node))) then
Put("exception");
dp..Alternatives(AS-.ALTER&TIVL.S(Node)),

end if;
Put("end"), named block: identifier follows end
Put(Ident),

ad dp..blockl

proasduze dp-baockLa9:ub(Node: In TREE) is
begin

If KIND(Node) - dn...u9ub them
Put, (01Au separate"),

eaim
-"declare" not printed

dpI 9:m...(AS.IT.S3(Node)),
Pu:("begin"),
dp..atm~s(AS..TDLS),
if not IS.AIPT(LIST(AS-.AlaTrTVE.S(Node))) then

dp...Aterntive a(AS..ALTIEm(ATZES(Node)),p
end if;
Put("end; a)

am if;
ad dp..biocks

Figure 2-4: Procedures for Reconstructing Blocks

Source Reconstruction Section 2. 3 IPage 41

prcedure dp....cents(Node: In TREE) Is

begin
it not Void(IJLCCMe9fS(Node)) then

Puat(tLCOHeZM(Node))
Put(cr a If); - end of line terminators

end if;
end dp..couusnts I

To Include comments In the source reconstructed from a constant node. the
example from Section 2. 1. 1 on page 30. we simply add a statement to call

* dp_Comments at the end of the procedure,

procedure dp..constant(Nodet in TREE) is

begin
dp....D.S(A&ID..S(LNode)),
Put("t constant O)p
dp..TYPE...SPEC(AS-TYPE-SPEC(Node))
dp..OBJEC DEF(AS...OUJEC..DEr(Node)),

dp....cnte(Node) - print coinnt if present
end dp...onms.ant;

The source reconstruction algorithm appends the comment to the text for the
node It Is attached to. Thus, the effect on the reconstruction of a constant
object declaration varies. Consider the ADA statement

IDi, 102: constant SUBTYPE t- EXP; - comment text

If the comment text Is attached to the id...s node the statement Is reconstructed
as

MLi, 1W.1- comment text
s constant SUBTYPE : - EXP;

If the comment Is attached to the OBJTYPESPEC the statement Is reconstructed
as

101, 102: constant; SUBTYPE -comment text
:- EXPi

Of course, a responsible pretty-printer will Indent the continuation of the
statement on the next line. In this chapter we have only presented the design
for a pretty-printer to produce unformatted text. Formatting Issues are discussed
In Chapter 3.

Section 3 /Page 42 A Pretty-Printer for ADA

Formatting Section 3 I Page 43

CHAPTER 3
FORMATTING

In this chapter we discuss the formatting of source text and the formatting of

ADA source text In particular. PREIrYPRINT formats reconstructed source text by
calling entries In FORMAT, an AOA package which provides an Interlace to the

output medium, assistance In placement of line breaks, and support for inden-

tation.

This chapter begins with a discussion of the classical formatting problems.

followed by a general discussion of our design for solving the set of classical
problems. The chapter closes with the presentation of the package FORMAT.

3. 1. Classical Formatting Problems

A proper understanding of the problems associated with pretty-printing re-

quires an appreciation of the goal of a pretty-printer. In a word, the goal of
every pretty-printer is to produce *readable" source. Readability Is that quality
that makes a program easy to understand. debug, modify, test, and maintain.
Insofar as programming is an art. what makes a program readable is a question

of aesthetics and Is often debated. Indeed, some aspects of pretty-printing that
we present as facts are actually our own opinions.

There are some generally accepted tenets of pretty-printing: the formatting of

the source should help the reader visualize the syntax: the nesting of the
program should apparent at a glance; and Individual statements. declarations.

and expressions should be discernible.

Consistency Is another benefit accrued by pretty-printing. Programs formatted

by the same pretty-printer are consistently arranged. A pride of programmers
that are sharing code can use the output of a pretty-printer as the de facto

standard of readability. The pretty-printed programs thus share a homogeneous

style and another programmer's code does not look foreign.

The ADA LRM uses an Implicit formatting style for Its programming examples.

The pretty-printer we have designed formats In this style. The examples
presented in this section also are formatted In this style.

Section 3.1.1 / Page 44 A Pretty-Printer for ADA

3. 1. 1. Indentation

Indentation Is the single most Important aspect of program formatting.. Proper

Indentation can be used to Indicate program nesting. and to diagram control

constructs. In the Idyllic situation where all programs are terse and compact

enough that each statement can exist on its own line Indentation is easy. One

example of the use of indentation for ADA Is to show nested scopes.

pzoae Nest is
Number comnstant t- 42; - declarat ions indented
Object i XNTEGER,

begin
Object %- Number; - statements indented

ad Nest;

The declarations and statements within the procedure body are distinguishable

from the syntax defining the body by their Indentation. The 'begin' and *end*

are not Indented and clearly demarcate the bounds of the body.

Similarly. Indentation can make the conditional clauses of an ADA "f" state-

ment more visible.

yroceur Nest: is
Number C onStant, :- 42; - declarations indented
Object InTEZGR;

begin
Object - Number; - statements indented
if Object - Number then

Object :- Number; - each conditional clause indentedelse
Object s- Number;

Wd if;
end mest;

The effect of the Indentation is additive. Each construct that uses Indentation

Indents in from the current level. The Increasing Indentation Is the first problem

a pretty-printer has to solve. The number of spaces for each Increment of

Indentation must be small enough that at the maximum excursion the space

remaining on the line is usable. The obvious solution la to base the Indentation

Increment on the maximum Indentation depth. Of course, the quantum nature of

the output medium (I.e., the minimum Indentation Is at least one space) may

force the maximum excursion to exceed a reasonable bound for even the smallest

Increment. Indentation beyond this point should be prevented.

It should be noted that a program with control structure nesting so deep that

further Indentation Is prevented Is probably too complex to be readable anyway.

The program should be analyzed to see where complexity can be removed, most

likely by dividing it Into less complex modules. thereby making each module more

Formatting Section 3.1.1 / Page 45

readable and the whole more understandable.

3.1.2. Line Breaks

The programs that a pretty-printer has to format are not Ideal. Simply

choosing to indent based on control structures will not gain readability by Itself if
statements extend beyond the length of the line. Consider the formatting of an

if statement.

If condition tben
objectl :- expressionl + expreseion.2
procedure.lcall;

else
object2 :- expressionl + expresasion2;

Ord if;

As long as the line width is large enough. this formatting Is very readable. The

situation is less sanguine when fewer columns are available. The following

example Is unreadable because the Indentation is lost when the statement Is

continued on the next line.

If condition whn
objectl t- expressionl +
expression2;
procedure-call 3else
obJect2 t- expressionl +

expreaeion2s
ed if,

Using the current level of indentation for the continuation of the statements

increases the readability but still leaves room for Improvement.

if condition then
objectl :- expressionl +
expzexnion2;
procemre_call;

elme
obJecl:2 :- e Pressionl +
expression2j

At first glance. the continuation of the broken line, the text "expression2". looks
like a separate statement. It has the same visual Importance as the call to
procedure "procedure-call*. Indenting the continuation of lines will avoid this

confusion. The following Is much more readable.

If condition then
objecti :- expressionl +

expree.1.on2s
procedure-..calls

else
oict;2 t- expreselonl +

qxpreavion2;

Section 3.1. 2 / Page 46 A Pretty-Printer for ADA

!
ed If;

Choosing where to break a line can be as Important as choosing which

column to start the continuation of a broken line. Consider the following

statement.

objectl :- expressionl + expression2 + function_call(paraml,param2))

On a shorter line this statement would have to be broken and continued on the
next line. A truly awful break wc uld be within the function call.

objectl : expressioni + expression2 + functiorncall(paraml,
param2);

An Improvement can be made by not breaking up syntactic elements. The

function call Is an expression that should not be broken up unless absolutely

necessary. Further Improvement can be made by moving the operator to the

next line. This move makes It obvious that the continuation Is indeed part of the

expression on the previous line.

objecti :- expressionl + expression2
+ functioncall(paraml, param2);

A final improvement can be made by indenting the continuation of the broken

statement to illustrate some of the semantics. In this case the function call is

part of the expression on the right hand side of the assignment statement.

Beginning the continuation so It lines up to the right of the assignment operator

can help to show this relationship and aid in the reader's understanding.

objecti .- expressionl + expression2
+ functionrcall(paraml, param2);

Choosing not to break a line can be as important as choosing where to break

a line. For example, an If statement that will fit on one line should most likely

be placed on one line. The terseness of

if condition then statmnti end if;

recommends It above the sprawling

if condition thean
stat~unt;

end if;

It Is also advantageous to lnclud, more that one statement on a line when

the statements are brief.

X "7 m X

The statements above are sufficiently terse to be Included on the same line

without loss of readability.

Formatting Section 3.1. 3 / Page 47

3.1.3. Lists and Sequences

Certain ADA syntactic constructs are lists of Items. When breaking a con-

struct over several lines lists should recb've special consideration. If a list must

be broken up to fit on a line, then placing each Item in the list on a separate

line is often the most readable. A procedure specification is the most Illustrative

example of this situation.

p urProc(X: in Ti; Y: in T2; Z: in T3);

Suppose only the first two parameter specifications fit on the line. Simply

breaking the line so that parameter specifications are unbroken is reasonable.

The continuation should be Indented to show it is part of the list of actuals.

1; Proc(X: in TI; Y: in T2;
Z: in T3);

One possible Improvement is to treat each parameter specification with equal

importance. Thus. if one parameter specification has to appear on a separate

line, all specifications should be on separate lines. The example is reformatted

to show this.

procedure Proc(X: in Ti;
Y: in T2;
Z: in T3);

In declaring the last example superior to the one immediately preceding it we

are treading lightly. Like any aesthetic pronouncement It has a subjective basis.
1

Nonetheless, this formatting style is used throughout the PRET1PRINT design

3. 1.4. Comments

The consideration of comments during text formatting is a poorly understood

Issue. In many cases the Introduction of comments into the source text.

especially comments which, like ADA. are terminated by a line break, will force

formatting decisions. For example, an If statement that can be placed on one

line.

if condition then stat mnt; end if;

may be forced by comments to exist on three lines.

if condition then - the condition checks Poo
statement; - the statement sets Poo

end if; - Poo now usable

R osn' weaken our cam to add that this IS the way long procedure specitlations are formatted in
Ow AOA LAM.

Section 3. 1. 4 1 Page 48 A Pretty-Printer for ADA

One of the biggest Issues Is how to decide where comments should be broken

If there Is Insufficient room on a line. Unlike ADA source, where the syntax Is

defined, there Is no way to determine the context of the comment. One such

dilemma exists when considering the formatting of a statement with a comment
when the statement does not fit on the line. Consider the following statement.

object :- expressionl + expression2 + func(x,y); - expression2 is eal

If the statement is printed on a line that Is narrower, then the question of how

to break the line Is unsolvable. It may be possible to break the comment over

several lines.

object s- expreesionl + expression2 + func(x,y); - expression2
is real

The comment may be more readable as a complete line and it may be possible

to fit the statement on one line, and the comment on the next.

object :- expressioni + expression2 + func(x,y);
- ecpression2 is real

It can be argued that the statement should be broken. even If it fits, so the

comment has some of the proper context.

object :- expressioni + expression2
+ func(x,y); - expression2 is real

Of course. in our example the context Is lost because the comment refers to

expression2.

An omniscient pretty-printer would recognize when a comment Is best

represented by breaking the statement it describes.

object :- expreesionl + expreesion2 - expression2 is real
+ fUnc(x,y)j

The problems related to comments are compounded when recreating com-

ments from an internal representation such as DIANA. In this case the comments

are In some manner attached to the nodes of a parse tree. The pretty-printer

operating from this tree must then recreate the source and Intelligently re-insert

the comments Into the source. To be effective, the comments must be Intel-

ligently associated with the nodes In the Internal representation, and the pretty-

printer must understand this association. To a first approximation this associa-

tion can be done with a simple strategy. In the design of PRETTrPRINT we have

assumed that a comment associated with a node should be printed after the text

for the node is printed. However, it is easy to Imagine comments that may be
ruined by anything less than an omniscient pretty-printer. The most Insidious.

though unlikely, example Is the following piece of ADA text:

Formatting Section 3.1.4 / Page 49

object I - expr esionl + expression2;
- I I I

- I I - expression2 is column number
- I I

- expreusionl is the line number
- I

the object is returned to caller

3.1.5. Whitespace

One way to make a program more readable Is to make its components easily

distinguishable. Towards this end whitespace, blank lines on the page. can be

used as a visual separator. Controlling whitespace Is something a programmer

can do better than a pretty-printer because the programmer has an under-

standing of the logical mapping of the program to the problem the programmer is

solving. However, because ADA provides mechanisms for dividing up a program

(packages. subprograms. tasks. etc.). most logical divisions will also be syn-

tactic divisions. PRETTYPRINT does add whitespace before packages. sub-
programs, and tasks.

3.1.6. Page Layout

Equally as Important as the consideration of the placement of source text on

Individual lines Is the layout of the lines on the page. It Is desirable to place

single ideas on a single page. This allows the reader of the program to focus

on a single concept at a time. Just as It is undesirable for a syntactic element

to be broken over a line. It Is undesirable for a program component to be

broken over a page. Although the problem Is not considered In the design of

PRErIYPmINT. the principles used In formatting statements and declarations on

individual lines can be applied to the layout of subprograms and packages on the

page.

3.1.7. Use of Fonts

Using fonts to distinguish different lexical entitles can be an effective way to

Improve the readability of a program. In this document we have consistently

used a bold typeface when writing ADA reserved words. The reserved words are

then set apart from the identifiers of the program. and the syntactic structure

can be easily recognized. Another possible use of fonts Is an Italic font for

comments. A pretty-printer that Is reconstructing the source text can use fonts

effectively In this way.

Section 3. 1. 7 I Page 50 A Pretty-Printer for ADA

Another way to Improve readability Is to use consistent representations for

Identifiers. ADA allows several representations of an Identifier to be used. Case

consistency can aid In recognizing user defined Identifiers. A pretty-printer can

normalize all occurrences of Identifiers so that all representations are Identical.

3.2. Solutions

In this section we discuss the ways PRETTYPRINT solves the classical formatting

problems. This discussion serves as an Introduction to the operations of

FORMAT. Section 3.3 provides a more complete description of the formatting

operations and Chapter 4 contains the discussion of all the Issues related to

recreation of source.

Before considering cases. we review the basic operation of PRETTYPRINT.

PRETI"PRINT makes two passes (tree walks) over the DIANA structure. In the first

pass it computes the number of characters needed to print each node, the

largest element in each sequence, and the maximum nesting depth of the

program. In the second pass the source is reconstructed and the values

computed during the first pass are used to make decisions concerning line

breaks and Indentation.

3. 2. 1. Solving Indentation

Section 3. 1. 1 on page 44 describes the classic use of Indentation to

represent program block nesting. and syntax structure. PRETTYPRINT uses Inden-

tation In the classical way. Support for Indentation Is provided by the package

FORMAT through the two entries Indent and Lndent. Indent causes the next line

to be Indented by an increment from the previous line. Undent reverts the

Indentation to that In force before the current Indentation. The complete

functionality of these procedures Is provided In Section 3.3 on page 54.

The Increment used for Indentation Is based on the depth of control structure

nesting. In the first pass over the DIMA structure the maximum nesting level for

the program Is computed. This value Is used to choose the Increment for

nesting. The Indentation increment must balance the need for distinguishable

Indentation against the need for usable space after Indentation. The FORMAT

function SetIncrement computes the Indentation Increment based on the nesting

depth of the program.

Formatting Section 3.2.2 I Page 51

3.2.2. Solving Line breaks

The procedure NewLine can force the Insertion of a line break In the
recreated source. Forcing a line break can be used to shape the source to
show the syntactic structure. For example. NewLine Is called after the keywords
'then". "else". "eseir. and 'end If" when displaying an if statement. NewLine
will automatically Indent the next line to the current Indentation level.

PRETMPRINT also needs to be able to intelligently decide where to break long

source lines. For this reason the number of characters needed to print the text
for a node Is recorded with the node. For example consider the following

statement.

objectl :- expresioni + expression2 + functioncall(pal, param2);

Recorded with the node functioncall is the number of characters needed to print
the function call. Before printing the function call the number of characters
required can be compared with the number of characters remaining on the line.
Insufficient space can be detected and a line break can be forced before the
printing of the function call. In fact, this inquiry can be made prior to the

printing of the *+" operator.

objecti :- expressioni + expression2
+ function-call(paranpara2);

The function Remaining returns the number of spaces remaining on the

current line.

FORMAT provides support for controlling at which column the continuation of a

line begins. The function Position returns the current position on the line. and
the procedure Setindent will set the current indentation to a specific column. It

Is possible in the example above to force the continuation of the assignment
statement to be to the right of the assignment operator. After printing the

assignment operator Position can be called to return the current position and this
value can be used as the argument to Setindent.

objectl :- ezpreuuionl + expzeeuion2
+ functLon-call(paraml, par2);

The Indentation caused by Setindent is canceled with a call to Undent.

Section 3.2.3 I Page 52 A Pretty-Printer for ADA

3. 2. 3. Solving Usts and Sequences

The support provided by the subprograms Position and SetIndent aid in the
processing of lists of syntactic elements. For example, If the parameter

specifications of a subprogram specification will not fit on one line, the Inden-

tation can be set so that all of the parameter specifications line up underneath
the first one. Again, the most Illustrative example Is the procedure specifica-

tIon.

proaedure Ptoc(X: iLn TI;
Y: in T2;
Z: in T3)i

Recorded with the nodes representing lists of Items Is the number of charac-
ters needed to print the entire list, and the size of the largest element in the

list. Using the former, PRErIPRNT can determine If a list will fit on the current

line. Using the latter. It can choose an Indentation such that all elements in
the list can appear on a single line. By comparing the space remaining with

the size of the largest element In the list, the following situation can be

detected.

procedur Pxoc(X: in TI;
Y_Ls_a_lonq_nam* i in

T2;
Zs in T3);

The Indentation can be selected so that the largest parameter specification will fit

on one line. The resulting format is clearer.

ononedure Proc
(Xi in Ti1
Ys._.a.onqgnai: in T2j
Zt In T3);

3.2.4. Solving Comments

There is little support for comments In PRETTYPR4T. One of the Inherent

problems with formatting comments from an Internal representation Is a lack of

understanding of how comments are associated with the nodes. In particular

DA does not specify this association. For this design we have assumed that

the comment attached to the node Is the comment that appeared after the node

In the original source. When recreating the source, any comments are placed

In the recreated source after the text for the node has been created.

PRETTYP~Mf" does not account for the length of comments In determining

whether text will fit on the line. This is a conscious decision on the part of the

Formatting Section 3.2.4 I Page 53

designers. The reason for this decision Is that It is impossible to distinguish

between the following cases.

objecti :- expr exionl + expression2; - first example

objectl :- expressioni +
expression2; - a second example with a longer comment

objectl :- expressioni + expression2;
- The third example has a coment the length of three lines.
- The entire commnt is associated with the statement above,
- although the content may indeed refer to a statement below.

Without a way to interpret the meaning of a comment, which Is beyond the

scope of a pretty-printer, there Is no way to Intelligently associate comments.

Instead of basing formatting decisions on questionable Input, we have chosen to

Ignore comments while making formatting decisions.

3.2.5. Solving WhiteSpace and Page Layout

PRETTYPRINT adds whitespace to the reconstructed source by calling NewLine

multiple times. Whitespace is produced as a buffer for subprogram and package

specifications and bodies. It is also produced between every compilatIon unit.

PRETYPRINr does not address the question of page layout. The solution to

the problem is not very difficult. The second pass over the DIANA structure can

be used to produce a tree attributed with the number of lines needed to print

each node. Then a third pass can pass over the tree creating formatted source

while determining page breaks. The types of decisions necessary are analogous

to the decisions needed for line breaks. If a program body contains more lines

than remain on a page. a page break can be inserted before the body so it

remains intact.

3.2.6. Solving Use of Fonts

FORMAT provides a mechanism to differentiate between different lexical Items

In ADA. ReservedForm. IdentForm. and ComForm are used to append reserved

words, Identifiers. and comments respectively. No commitment Is made as to

how they are represented.

Section 3.3 / Page 54 A Pretty-Printer for ADA

3. 3. Package "FORMAT"

The formatting operations supplied by FORMAT were casually Introduced in the

previous section. In this section we describe the complete functionality of the

ADA package FORMAT. Figure 3-1 shows the FORMAT package specification.

The package body is not specified in this document.

The package FORMAT provides functional support In two Important ways.

Firstly. FORMAT handles all of the output of the recreated source, and secondly,

FORMAT provides support for proper indentation.

The output of source is handled by operations that append text to the

previously generated source text. The package hides any device dependency

(particularly If boldface and italics are to be used). If buffering of output is

required. the buffering will be transparent to the the programs that call the

FORMAT routines.

The principle reason that buffering of output may be desired Is for creating

special print effects. When text Is appended, the text Is qualified as either an

ADA reserved word, Identifier. comment, or other lexeme. FORMAT can use

output device characteristics such as boldface type. italic fonts, and underlining

to vlsumlly distinguish these classes of text. Depending on the output device.

und... ,ing and boldface may require printing two output lines without a Ilnefeed

to achieve the desired effect. In such an Instance buffering the line before

printing is absolutely necessary.

Buffering also eases some formatting problems. Consider the problem of

printing a lexeme larger than the space remaining afte, Indentation. In such a

case the I lentaton should be reduced to allow enough space for the lexeme to

be printed If the spacing for Indentation Is output directly to an output device It

Is Impossible to reclaim that space. A new line would have to be started with

lese Indentation to accommodate the lexeme, leaving a blank line In the output.

However, If the output Is buffered, the space used for the Indentation can be

reclaimed from the buffer.

Whether the output Is buffered or not is transparent to the subprograms

traversing the DLANA tree constructing the source. The reconstruction routines

are only concerned with the current output line. The operations provided append

text to the current line and query FORMAT regarding the status of the line (such

as the number of characters remaining, or the current position on the line).

The traversal routines also may force a line break Into the output either ex-

Formatting Section 3. 3 / Page 55

- Package that provides operations to format reconstructed Ada source

pefd-go roRmT is

LineLnqth :
ooNstant POSITIVE :- 120; - lenqth of the output line

tpe Column is
range O..LneLenqth; - position on the line

There are four procedures to append text to the output buffer

procedure AddText(Text: in String),
procedure ResorM - add Ada reserved words

(Text: In String);
Procedure Co rorm - add comments

(Text: in String);
Procedure IdentForm - add program identifiers

(TeXt: In String);

There are two function to return \tatus of the output buffer

function Remaining return Columns unused characters in bul-fer
function Position return Column; - used characters in buffer

- this procedure creates a line break

procedure NewLine;

- this procedure sets the indentation incrment

procedure Setincrment(Depth: in POSITIVE);

- three procedures provide indentation operations

procedure Indent; - increment from last indentat ion
Procedure Undent; - revert to previous indentation
proceure S etlndnt(Po:r In Column);

- set indentation to Poe
r RIPOMciT;

Figure 3-1: FORMAT Package Specification

Section 3.3 / Page 58 A Pretty-Printer for ADA

plicitly. by Invoking the function NewUne. or Implicitly by appending text beyond

the end of the line. At each line break a new line is started by moving the

position to the current Indentation level (whether this is done by actually produc-

Ing the required number of spaces or by using tabs Is device dependent and not

considered).

The Indentation support automatically Indents each new line of output. The

Interface provided by FORMAT allows the Indentation to be Incremented, for

typical nesting level Indentation, or to be set to a specific column. The model

we use to describe the operations Is a LIFO stack. The actual Implementation of

the operations Is hidden.

3.3.1. Output Support Operations

The ADA program source program has four classes of lexical items. The first

class consists of operators and delimiters. Lexical items in this class, such as

semicolons, are appended to the buffer using the procedure Addtext.

The other classes are AOA reserved words. ADA Identifiers, and comments.

FORMAT accounts for these by providing three additional procedures for append-

Ing text to the output stream. These procedures receive the text as input and

append a formatted form of text to the created source (the Implementation of

how the text is formatted is device dependent and not considered here). The

three procedures are ReaForm (to format reserved words), ComForm (to format

comments), and IdentForm (to format Identifiers). By using a separate proce-
dure for each class, the representation of the class in the output text can be

hidden from the routines recreating the source.

Two functions. Remaining and Position, are provided to allow Inquiry Into the

status of the current output line.

3.3.1. 1. Procedure AddText

The simplest formatting operations are the procedures that append text to the

output stream. The most straightforward of these procedures is AddText. This

procedure appends the text It receives to the output stream and updates the

status of the current line.

There are two cases to consider when the text to be appended Is larger than

the space remaining on the current line. If this Is the first lexeme after the

Indentation then the Indentation Is reduced to accommodate the lexeme. (The

Formettlng Section 3. 3. 1. I Page 57

lexeme will always be less than the line width so this Is possible - see the
assumptions listed In Section 1.4.2 on page 22). Otherwise. a line break Is
Inserted into the output stream and a new line Is begun. Inserting the line

break and beginning the new line Is achieved by calling the procedure NewLine.
The text Is then appended to the new line. (NewLine causes the line to be

Indented properly).

After the text has been appended to the line the line status (current position

on the line and number of spaces remaining) will be updated.

3.3.1.2. Procedure ResForm

Procedure ResForm appends an ADA reserved word to the output stream.

Functionally It Is Identical to AddText. It calls NewLine if the current line is

exceeded and will update the status of the current line after the text Is ap-

pended.

The representation of reserved words Is not specified. The way in which

FORMAT records the formatting is also not specified. If the output Is buffered.

It Is possible to modify the buffer so that each character can be given an

attribute which indicates If the character Is to be printed as bold. Italics, or
underlined.

3.3.1.3. Procedure IdentForm

Procedure IdentForm appends an ADA Identifier to the output stream. Func-

tionally It Is Identical to AddText and ResForm. It calls NewLine If the current
line is exceeded and will update the status of the current line after the text is

appended.

The representation of identifiers is not specified. The way In which FORMAT

records the formatting Is also not specified. If the output Is buffered, It is

possible to modify the buffer so that each character can be given an attribute

that indicates If the character Is to be printed as bold, Italics, or underlined.

IdentForm can be used to represent identifiers consistently. For example. all

Identifiers can be normalized such that the first letter Is In upper case and the

remaining characters are In lower case. The representation of Identifiers In

DIANA Is not specified. The DIANA producer 2 that creates the DIANA structure Is

2s the discusulon of Diane ums in Section 1.1.3 of the DRM

Section 3.3. 1. 3 Page 58 A Pretty-Printer for ADA

not required to preserve the case of identifiers.

3.3.1.4. Procedure ComForm

Procedure ComForm appends a comment to the output stream. Functionally It

is identical to AddText and ResForm. However, since a comment Is terminated

by the end of the line. ComForm calls NewLine to Insert a line break after the

comment has been appended. Of course. the status of the current line Is

updated after the comment is appended.

The procedure ComForm receives as Input an ADA comment. The comment

Is simply an ADA text string. ComForm appends the characters *--" to the

output buffer followed by the comment. Some care is needed when adding

comments. If an Insufficient amount of space remains on the line a new line

must be started. If the comment extends over several lines the comment is

broken at the space nearest the end of the line and Is continued on the next

line, again beginning the line with the comment delimiter -- "

3.3.1.5. Procedure NewLine

The procedure NewLine Inserts a line break into the output stream and

creates the proper indentation on the next line. The indentation Is determined

by the Indentation operations listed below In Section 3.3.2. Using the stack

model, each time a new line Is created the indentation at the top of the stack is

read. This value is the number of blank spaces needed at the beginning of the

new line. The way NewLine creates the Indentation is possibly device-dependent

and thus not specified here (e.g., a device that supports tabs may use tabs).

3. 3. 1. 6. Function Remaining and Function Position

The functions Remaining and Position provide a means of Inquiry as to the

status of the current line. Remaining returns the number of unused characters

at the end of the current line and Position returns the current position on the

line. The sum of the two values will add up to the length of the output line.

LineLength.

3.3.2. Indentation Stack Operations

The model we use to describe the operation of the Indentation support is a

LIFO stack. All Indentation of the source program Is properly nested. When

there is a new indentation, the new value replaces the old value. When the

-' Z

Formatting Section 3.3.2 / Page 59

scope of the indentation Is ended the text is "undented "3 , that is the Indentation

reverts back to the indentation In effect before the current Indentation. This

proper nesting is well modeled by a stack. Although we are not specifying the

Implementation of the indentation, we will refer to the operations In terms of a

stack.

The FORMAT entries related to Indentation are Setincrement. Indent. Undent.

and SetIndent.

3. 3. 2. 1. Procedure SetIncrement

SetIncrement receives as its argument the maximum nesting depth of the

program, It then chooses an indentation increment based on this number. It

tries to maximize the increment, to make each Indentation more distinctive, while

keeping the maximum excursion small (the choice of how far across the line the

maximum excursion should go is not specified).

3. 3. 2. 2. Procedure Indent

Indent increases the current Indentation level by a computed increment (up to

a predefined maximum Indentation). and pushes that value onto the stack. For

example. if the current line is indented ten spaces and the Indentation increment

Is five spaces, then the value fifteen would be saved on the stack as the value

for the next indentation.

It is possible that the program Is so deeply nested that even with a minimum

Increment the Indentation becoit-is too large. A maximum Indentation Is en-

forced to ensure that there Is reasonable space available after Indentation.

When the maximum is reached. an additional call to Indent does not Increment

the indentation; It pushes another copy of the current value onto the stack.

3.3. 2.3. Procedure Undent

Undent pops the last Indentation value off of the stack. This operation

reverts the Indentation to the value previously in effect.

Note that setting a new Indentation level (or removing It through Undent) has

no Immediate effect on the output. Indentation occurs at the next line break.

When the line break occurs the value at the top of the stack is used to

3we us the neologim undwt for conwenince

Section 3.3.2.3 / Page 80 A Pretty-Printei for ADA

determine the indentation for the next line. Line breaks are inserted when

appending text that exceeds the remaining space on a line. or when NewLine is

called. Thus an Indent operation followed by Undent before a line break can be

Inserted has no effect on the reconstructed source.

3. 3. 2.4. Procedure Setindent

Setindent is another operation on the Indentation stack. It allows the inden-

tation to be set to a specified column. Unlike Indent which increments the

indentation by a fixed increment. SetIndent pushes the column it receives as its

actual parameter onto the stack. The procedure Undent is used to remove this

Indentation and revert to the previous indentation.

Setindent is useful for aligning lexical items. This has been illustrated In

Section 3.2.3 on page 52

3.4. Use of Format Operations

To Illustrate the use of the operations of the package FORMAT. we consider

how the following piece of ADA source could be formatted.

procedure foobar(paraml: in typel; praxm2: in
type2) is
begin stateuwntis - comuentl
statement2; end foobar;

The procedure ResForm appends reserved words to the output text. In this
example the reserved words are 'procedure'. 'in". 'Is'. *begin'. and *end'.

The identifiers ('foobar*. "paramP'. "param2". "typel'. and "type2") are ap-

pended using the procedure IdentForm. CornForm is used for adding the

comment. We assume the two statements are short enough to be appended

using AddText. The following lists in order the successive calls to entries in

FORMAT that are needed to format the source code In the example.

Formatting Section 3.4 / Page 61

ReuFor "procedure ")g - includes space after "procedure"
IdentFor. "foobar")i
AddText("(");
Set Indent(Position), - set indent to line up parameters
IdontporM("param1")j
(...) - here ": in typel;" is output
NewLine; - new line gets indentation
IdentForm("param2");
(...) - here ": in type2" in output
Addtext(")");
Undent; - remove indentation
ResForm("is");
NewLine; - new line gets no indentation
Resrorm(begin");
Indent; - indent by increment for block
NewLine; - new line gets indentation
AddText("statementl;");
CcuForm("commentl"); - - is added by ConForm
Addnext("statement2"),
Undenti - undent - end of block
NewLine; - new line gets no indentation
Resform("end ");
IdentFonu("foobar");
AddText(";");

The resultant formatted program Is more readable.

procedure foobar(paraml: in type.l;
param2: in type2) is

begin
statemntl; - commenti
statemnt2;

ed foobar;

Section 4 / Page 62 A Pretty-Printer for ADA

Recreating Formatted Source Section 4 / Page 63

CHAPTER 4
RECREATING FORMATTED SOURCE

This chapter presents the complete design of the DIANA to ADA pretty-printer.

PREMTYPRINT. It Is a blend of the simple source reconstruction described In

Chapter 2 with the formatting operations outlined In Chapter 3.

The formatted source Is constructed In two passes over the DIANA-like struc-

ture (it is In fact PPDIANA. a refinement of DIANA) The first pass. WALK1.

computes the maximum nesting depth of the program and the number of charac-

ters in the recreated source disregarding Indentation a'od comments. The

second pass. WALK2, reconstructs the source using the formit.lng operations of

package FORMAT. The second pass uses the character count Information

computed In the first pass to make formatting decisions about indentation and

where to break lines.

This chapter begins with the definition of the refinement of DIANA that defines

PPDiana. a structure with attributes to record the results of the first pass.

Subsequent sections describe the two passes in detail.

4.1. iI Refinement of DINIA

The IDL design provides two methods for defining an IDL structure In terms of

a previously defined IDL structure. Derivation is one method; Appendix II of the

ORM describes the ADA abstract parse tree as a derivation of the 0IANA deflnl-

tion. Derivation allows the deletion and addition of IDL type. node, and class

definitions.

Refinement Is the other means of defining a new IDL structure in terms of an

existing structure. In refinement, only IDL additions are permitted; deletions are

not. D0AN.._Concrete. defined at the end of Chapter 2 of the DRM, Is a

refinement of DIANA. For a complete discussion of the semantics of these

features of IDL. refer to the "IDL - Interface Description Language Formal

Description* [41.

We use IDL refinement to define a structure that Is DIANA augmented with

attributes for pretty-printing. We add three attributes to the structure.

pp-chars All nodes have this attribute. It represents the number of

Section 4.1 / Page 64 A Pretty-Printer for ADA

characters needed to print the text for the node. Ignoring
Indentation and comments.

ppraxchers This Is an attribute of only nodes with the as_list attribute.
The value of ppjmax.chars Is the maximum of ppchars for
each node In the sequence that Is the aajist attribute.

pp.jndent This Is an attribute of the root node. compilation. The
value of this attribute is the maximum nesting depth below
this node. It measures Indentation only for block and

control structure nesting.

The refinement of a structure Is specified with the following IoL syntax.

Structure Anothertiame Refines SomeName Is
- Additional IDL statemnts to define further the
- structure SomName, such an a specification of the
- internal and external representations for private
- types in the abstract structure Somename.
- New nodes may be defined.
- New attributes may be defined.
End

Consider the definition of the IDL structure SomeName described in Section

Section 1,4 of the ORM and repeated in Figure 4-1 on page 65. Following the

definition of SomeName In the same figure Is an IDL definition of the IDL

structure. ReflnedName. ReflnedName is a refinement of the IDL structure

SomeName that adds the attributes pp-chars to the nodes tree and leaf.

The effect of the refinement is that In the IDL structure RefinedName, the

node tree now has the attributes op and arc defined in the IOL specification of

SomeName, and the attribute ppchars as defined in the refinement. The effect

Is as If the node had been defined with three attributes originally.

We define a refinement of DIANA, PPDIANA. that Is the structure necessary

for PREMTPRINT. The entire IDL refinement Is Included as Appendix C.

The Input to PRETPRINT Is DIANA. The structure that WALKI modifies and

WALK2 uses Is PPODIANA. The process by which DIANA Is modified Into PPDIANA

is not specified In this design. It is an assumption of the design that the

operation that reads the DIANA, the procedure Get_PPTree of package MAIN.

returns to MAIN a PPDIANA tree.

An IDL processor can be used to create the interface programs for Pret-

tyPrlnt. An IDL processor can generate both a reader. to read an ASCII

representation of DIANA and return a PPDIANA tree, and an Interface program

Recreating Formatted Source Section 4. 1 IPage 65

Structure ExpressionTree Root MCP Is

- First. we define a private type.

Type SourcePosition;

-Next we define the notion of an expression, EXP.

EXP I:- leaf I tree

-Next we define the nodes and their attributes.

tre oP: OPERATOR, /eft: EXP, right: EXP
tree arc: Source...Position;
ISaO name:t String ;
leaf - arc: SourcePosition;

- Finally we define the notion of an OPERATOR as the
- union of a collection of nodes; the null -3 productions
- are needed to define the node types since
- node type aes are never implicitly defined.

OPERATOR ::-Plus I minus I time I dividej

Plus M) , minus W), timws -) divide-

End

-Define a new structure by refinement of the old

Structure Ref ined~ame Ref ines SornaName Is

- add the attribute pp...chara to
- leaf and tree

tree -~pp...chars v Integer;
leaf -~pp...chars: integers

EMd

Figure 4-1: Example of I01 Refinement

Section 4.1 / Page 66 A Pretty-Printer for ADA

that receives as Input the Internal form of DAA and returns a PPDNA tree.

To automatically generate the Interface, the IDL processor needs a specification

of the process.

An IDL process specification describes the structure of the input data. output

data, and the Internally used data structure. Process specifications are

described In the IDL manual. A simple process specification Is shown below.
In the example. the process SomeProcess is defined as a process. The Input

port declaration (begun with the IDL keyword "re") names the Input port.

"lnport'. and states the data will be the IDL structure "SomeName*. Likewise the

output declaration names the port "Outport" and defines the output as a

*ReflnodName" structure.

Process Sosprocess Is

- define the input structure

Pre Inport i SomeName;

define the output structure

Post Outport : RefinedName;

Many processes, Including PRET"YPRINT. use a different data structure inter-

nally. The IOL definition of the process PRETTYPRINT, Figure 4-2. has an

Invariant clause ("Inv PP_Dlana') to show that PRETTYPRINT uses PPDIANA Inter-

nally. The process specification for PREMPRIt.'T does not specify any output.

The output of PRETrYPRINT is a text file which Is not an IDL structure and Is not

considered in the IOL process specification.

The process specification for PRETTVPRINT, shown In Figure 4-2. defines the

necessary Interface for PRETTYPRINT. An IDL processor can take this specifica-

tion, along with the definition of DANA and PPDIANA. and create the Interface

programs for PRETTYPRtNT.

4. 1. 1. Operations on PPOiana

PP_DIA A. like DIANA. Is an abstract data type. In Chapter 4 of the DRM the

DIANA operations are defined. In this chapter we define additional operations that

access the attributes defined In the refinement.

Chapter 4 of the DRM provides the specification of the ADA package Diana.

Recreating Formatted Source Section 4.1.1 I Page 67

Process PrettyPrint Inv PPDiana Is

- PrettyPrint uses PPDiana internally

- the only input is Diana

Pre Inport: Diana;

End

Figure 4-2: IDL Process Specification of PrettyPrint

The package is also discussed in Section 1. 2. 2. 1 on page 9 of this document.

The package Diana provides operations on the DIANA data type. We here define

the package PP-Oiana that provides the operations on the data type PPDIANA.

Because PP_DIANA is a refinement of DIANA. the package must contain all of

the operations in the package Diana. In addition, the package must contain

operations on the three pp- attributes that have been added. Figure 4-3 shows

the package that defines the operations. This package adds six new operations.

For each attribute there are two new subprograms: a procedure used to set the

value of the attribute and a function used to read the value of the attribute.

with USERPK; use USERPK;
pecs _ PPDiana is

- the package contains every operation in package DIANA

proCe0ure PPPCHD(t: in out TREEI v in MIZER);
utim PP_CMARS(t in TREE) return INTEGER;

u PPMX I(t: In out TREE; vs in INTEGER);
function PPJ B(t: in TREE) return INTEGER;

ro u PPEST(tt in out TREE; v: in INTEGER);
function PPJIEST(In TREE) return INMMMR;

pivaJ nte

C...) - not considered here

end PPDiana;

Figure 4-3: PPDWMA Operations

Section 4.2 / Page 68 A Pretty-Printer for ADA

4.2. The First Tree Walk - WALKI

In the first walk over the PPDIAN tree the values of the pp- attributes are

computed. The tree walk Is designed to use the general tree traversal opera-

tions of the package Diana described In Chapter 4 of the ORM.

In essence, during the first pass over the tree the number of characters

required to print each node, and the level of nesting at the root are passed up

the tree. The number of characters needed to print a node Is related (through

the addition of a constant) to the number of characters needed to print the

nodes that are its structural descendants. The number of characters needed to

print a leaf of the tree is related to the length of Its lexlcai (Ixsymrep or

Ix__numrep) attribute.

Similarly, the nesting depth below a node Is related to the nesting depth of

its structural offspring, In particular each offspring is Indented some amount

(possibly zero) from the parent node. This amount Is added to the nesting

depth of the child and compared to the values for the other offspring. The

maximum determines the nesting depth at the node. The nesting depth for each

leaf is zero.

The number of characters required to print a node Is needed during the

second walk over the tree and Is recorded at each node as the ppcharm

attribute. The nesting depth Is only needed at the root so compilation Is the

only node with the attribute pp-neat. (In the IDL refinement that defines

PP_Diana. in Appendix C. ppneat appears In only one place).

Nodes with asjlist attributes have the attribute ppnaxchara. This attribute

stores the maximum of the pp-chars attributes of the nodes in the the asJIst

sequence. This value Is recorded for use in the second pass also.

The package WALK1 specification and body Is shown In Figure 4-4 on page

69. The package specification shows that one procedure Is exported. also

named WALKf, and this procedure operates on an object of type

PP._Diana. TREE. TREE Is a type defined in the package PP_Dlana. All nodes

In PPDiana are of type TREE. When WALKI Is called it expects to be passed

the root node of a PPDI4A structure.

The package body shows that. 'n addition to WALKI, there are two mutually

recursve subprograms. LItwaik and Nodewalk, needed to traverse the tree. In

addition there are two constant arrays available: Nest and Char. The following

Recreating Formatted Source Section 4.2 / Page 69

P Package to perform the first walk over he tree.

with PP..Dianai use PPDiana; - DIANA package, for pretty print:inq

pakg WhIL1 is
procedure WRIJ.(Ti in out TREE);

end WALI;~

- Package to perform the first walk over the tree.

package body WAI is

Son-Count : ARrIrES range unary .. ternary;

nest: constant array (NODEZJAb, SonCounI:) of NATURAL

Char : constant array (NODENJ4E) of NATURAL

function Max(Xi in NATURAL) Y: in NATIRAL)
returns NATURAL in separate;

pcure istWalk(Node : in out TREE;
Depth : out NATURAL,
Length : out NATURAL)
MaxLength i out NATURAL),

procedure NodeWalk(Node s in out TREE;
Depth s out NATURAL;
Length s out NATURAL);

procedure Walkl(T: in out TREE) is separate;

procedure Li. t:lk(Node In out TREE,
Depth s out NATURAL,
Lanqth t out NATURAL,
MazLength t out NATURAL) is separate;

procedure ModWalk(Node , in out THK,:
Depth s out NATURAL;
Length t out NATURAL) is separate,

Figure 4-4: Package Walk SptcIlflcatlon And Body

Section 4.2 /Page 70 A Pretty-Printer for ADA

sections define Nest. Cher. Liatwalk and Nodewalk In detail.I 4.2. 1. Subunit Waiki
The subunit that defines procedure WALKf Iis shown In Figure 4-5 on page

70.

mepeata (WAIJKl)
Procedure Walkl(Ta in out TRIM) in

Depth: NATUJRAL;
Length t NATUJRAL;
Naxlength: NtATUJRAL;

begin

- the root is a compilation node, to be treated an a list
- ListWalk returns the nesting depth -3 Depth
- the number of chars -3- Length
- and the size of largest comp...unit -. KsxLength

ListWalk (T, Depth, Length, MaxLenth),

PPOIMM(T, Length),
P_)9IMMAM(T.Maxdnth),

PP...tDW(T, Depth);

end WALKIQ

Figure 4-5: Walki Subunit

WALK I receives as Input the node that Is the root of the source program, a

compilation node. The node has one structural attribute. as-liat that is a

sequence of comnp..unit nodes. The function LIST returns the sequence. WALK I

calls the procedure Llstwaik to walk down the sequence computing the values for

the number of characters (Length) . the maximum number of characters In any

compilation unit (MaxLength), and the maximum nesting depth In any compilation

unit (Depth). WALK 1 then uses the PP_..DIana operations to set the value of the

pp...chea. ppJnaxchars and pp-p,.nst. Compilation Is the only node with all three

pp... attributes.

Recreating Formatted Source Section 4.2.2 / Page 71

4.2.2. Nest: Nesting Constant Array

The constant array Nest is a doubly-subscripted array. The first subscript Is

for Indexing by node type. the second subscript for indexing by the structural

offspring of a node. For example. the entry Nest(dn-block,2) returns the

amount the second child of the block node Is Indented. Nodes with less than
three offspring have the value zero In entries for non-existent children. Nodes

with no offspring, the leafs, have the value zero for all entries. Nodes with the

attribute as.iat only are considered to have one child, the child being the

sequence of nodes.

As an example we consider the node accept. used to denote an accept

statement. The ADA syntax for the accept statement s

acceptstatemnt :a-
accept entry-name(formalpart) do

oequence-of.s.tatements
enl entrynamej

The IDL description of the DIANA node accept Is

accept -> as_name : NAME,
as_.param_aasoc_s : PA) _MSSOCS,
asstm._s : ST1S;

The first and second children of the node. as-name and asoaram-assocs

do not generate text that is indented. (The attributes represent the entry-name

and the formal-part respectively). The third child, as.stm3s does represent text
that Is indented, the sequence of statements. The value of Nest for this node

conveys this Information.

Nest: Ooamtant array (NODE_.NAKZ,sonCount) of NATURAL
s- (dn-accept -) (0,0,1), - only indent the third son

Nest Is used to compute the nesting depth. For each node foo. the nesting

depth fur the ith child Is the nesting depth for the node that Is the child, plus

the value of Nest(dniFoo. I). The nesting depth for the node Is the maximum of

the nesting depths for each child.

Note that the nesting depth represented In Nest Is only an approximation of
the Indentation. It Is possible for the indentation to be affected by other

factors. For Instance, a statement that continues beyond the end of a line may

be indented on the next line.

Section 4.2.2.1/ Page 72 A Pretty-Printer for ADA

4. 2. 2. 1. Practical Considerations in Nest

The value of Nest for the node record accounts for the nesting of Its children

and the fact it Is nested within its parent. The AOA syntax for a record type

specification is

type_declaration :
type Identifier is type_definition;

record,.typedefinition ::
record

componentjlist
end record

In general the type definition of a type declaration is not Indented. However,

when the type definition is a record type definition the keyword 'record" should

be Indented. This Information cannot be stored with the node type so It is

added to the record. The value of Nest for record would ordinarily represent

the fact the component list is indented once from the record definition. To

compensate this value is changed to two to account for the indentation of the

record definition.

Neet: costant array (NODEAN,SonCount) of Inieger
:- (dnrecord -> (2,0,0), ...

This entry Indicates that the text for the first child, the component list of the

record declaration, should be Indented two levels from the rest of the text of the

node. In reality, the record node Is Indented once and the component list is

Indented once again.

4.2.3. Char: the Character Count Constant Array

The constant array Char defines the number of characters necessary. in

addition to the structural offspring, the print the node. We use the oxample of

a record type specification.

The number of characters to print the record definition Is the number of

characters for the component list plus the number of characters needed to print

*record *. and 'end record' (note the spaces after 'record" needed to separate

the text from the componentIlst). The entry In Char for the node record

reflects this knowledge.

Char s constant array (NODE_NANE) of Irnteger
:- (drLrecord -3 17, ..

Recreating Formatted Source Section 4.2.3 / Page 73

The value seventeen indicates that printing a record type specification requires

seventeen characters In addition to what is required to print the component_list.

Specifically. the seventeen characters are record (seven characters

-- Including the space) and 'end record' (ten character3).

Note that Char does not account for Indentation. In the case of the record

definition the character count assumes that all of the text appears on the same

line.

4. 2. 3. 1. Practical Considerations In Char

There are some character counts that Char cannot represent. The most

notable Is the number of characters for variable object declarations (and constant

and In parameter declarations). If the variable object declaration has a defining

expression the characters ":=" must be accounted for. If the expression if

absent that characters will not appear. The value In Char Includes the count for

the *: =*. Although this affects the value of the pp.chars attribute for the node.

the effect can be accounted for In WALK2. When processing a var node with a

void asaoblectdef. WALK2 can subtract two characters from the total represented

in ppchars.

There are other Instances of small Inaccuracies In the generated character

count. None are serious. Although the global total. pp_chars at the

compilation node. Is only approximate, the local totals needed for formatting

decisions are accurate. For example In block nodes the ADA keyword *declare"

appears only when the node represents a block statement with a non-empty list

of declarations. This situation Is not serious beciese WALK2 uses the character

counts to determine line breaks. In a block statement *declare' Is preceded and

followed by line breaks and does not influence the line break decisions for the

list of declarations.

The computation of the length of lists Is tricky. Consider the formal part of

a subprogram declaration. It Is a list of parameter specifications. separated by

semicolons, enclosed by parentheses. The number of semicolons is dependent

on the size of the list; when there are three parameters there are two semi-

colons. WALKI does not count the number of Items In any lists. Char

accounts for this by adding one to the character counts of each parameter

specification (they only occur In this context). and accounts for the extra

semicolon in the list by subtracting one from the character count for the formal

part. This method Is also used for Identifier lists.

Section 4, 2. 4 / Page 74 A Pretty-Printer for ADA

4.2.4. Nodewalk

The subunit for the procedure Nodewalk is shown in Figure 4-6 on page 75.

The procedure NodeWalk is used to walk down the structural children of nodes.

For a node It produces two out parameters:

Depth the nesting depth bel-w this node. and

Length the number of characters needed to print the node.

The procedure Nodewalk traverses the tree using the general tree traversal

operations supplied by the package Diana. The function ARITY returns a value

of type ARITIES that Indicates the structure of the node. i.e.. the number of

offspring the node has:

nuliary Indicates no offspring (a leaf).

unary indicates one offspring.

binary Indicates two offspring.

ternary indicates three, and

arbitrary Indicates the node has as its descendant a sequence of
nodes (i.e., has an as_ist attribute).

The functions SON1. SON2. and SON3 are used to access the structural

attributes. The functlor SONI returns the node that Is the first child. The

subprograms SON2 and SON3 similarly return the second an third offspring.

The function KIND returns a value Indicating the type of node. This value

can be used to Index into Char and Nest.

Nodewalk processes the node based on its structure, using the value returned

by ARITY to discriminate between nodes. When the node Is unary. binary, or

ternary. Nodewalk Is recursively called to compute the values of nesting depth

and character count for the descendants, It returns the nesting depth for the

node. and the character count (the sum of the character counts of the children

and the value of Char for the node).

When the node Is nullary. a leaf. a further discrimination must be done.

The node may have no attributes of Interest (such as null-statement). only the

IxOymrep attribute, or only the x_numrep attribute. IOL private types symbol-rep

and number-rep are implemented so the function Length returns the number of

- - -

Recreating Formatted Source Section 4. 2. 4 /Page 75

aeparate (WALKi)
procedure NodeWaflk

(Node :in out TREE;
Depth :out NATURAL;
Length :out NATURAL) is

LocalDepth,ReturnedDepth: NATUR~AL :0;
LocalLength, Returnediength: NATURAL :- 0;
Localxaxlength :NATURAL :- 0;
WichSofl t TREE;

begin

cane ARITY(rs.de) in

%ton nullary -.
Depth :- 0; -leaf nodes have zero nesting
came KIND(node) is

when dn-and-then I(.)-
tjocalLength -Char(KIND(Node));

when dn-numric-.literal -)
LocalLength : - Lenqth(LXNUMREP(node)) +

Char(KIND(Node)),
when others -)

LocalLength :- Length(LX-SYMREP(Node)) +
Chax(KIND(Node));

an case;
when unary I binary I ternary-

for Son in unary .. ARITYC Node)
loop

case Son is
when unary -

WhichSon :~SON(node);
when binary

WhichSon -SON2(node),
uwen ternary -

WhichSon :SON3(node),
and cane;
Node walk(WhichSon, ReturnedDepth, Returned length);
Depth t - Max(LocalDepth, RetturnedDepth +Nest(KIND(node),n);
LocalLength t- LocalLength + ReturnedLength;

end loop,
when arbitrary

Listwalk(Nd, ReturnedDepth, Returnedrength, Localmaxlength);
Depth ReturnedDepth + Nest(KIND(Node), 1':
Length :-ReturnedLength + Char(KIND(Node)),

- set value of pp~jxaxchars
PP V=HCIARS(Node, Localxaxlength) t

end came;
PP-CHARB(Node, Length), - set value of pp...chaxs attribute
Length :- LocalLength;

end NodeWalk;

Figure 4-6: Procedure Nodewalk

Section 4.2.4 / Page 76 A Pretty-Printer for ADA

characters In their representation.

When the node Is arbitrary (its descendant is a sequence) the procedure

Liatwalk Is called to process the node. The value of the ppjnaxchars attribute

Is set to the value returned by MaxChar of Listwalk.

The last statement of the procedure sets the value of the attribute ppchars.

This attribute is recorded with all nodes in the tree.

Note that when Nodewalk computes the number of characters needed to print

a node It considers neither the comment for the node nor the indentation of the

node. The value of pp.chars represents the number of characters needed to

print the source, without comments, on an arbitrarily long line.

4.2. 5. Listwalk

The subunit for the procedure Listwalk is shown in Figure 4-7 on page 77.

The procedure walks down a sequence, of type SEQTYPE. and produces values

for three out parameters:

Depth the maximum nesting depth of all nodes in the sequence;

Length the number of characters needed to print the sequence
-- this Is the sum of the number of characters needed to
print each node In the sequence; and

Maxlength the maximum number of characters needed to print any one
node from the list.

Llstwalk receives as input a node of type 'arbitrary'. i.e. , a node with an

aslist attribute. The PP_DIana function LIST returns the sequence for the node.

HEAD returns the node at the head of the list; TAIL returns the sequence that
remains after removing the head. The function ISEMPTY returns true if the

sequence has no nodes. Thus the inner loop Is executed once for every node
In the sequence. During each Iteration the depth Is computed to be the

maximum of the previously computed depth and the nesting depth for the current

nodg: maxlength is computed analogously. The length of the sequence is

computed by as an accumulated sum.

Llstwalk does not set the value of any attributes directly -- It returns values

through Its out parameters. The attributes are set In Nodewalk or WALKI.

Al

Recreating Formatted Source Section 4.3 IPage 77

separate (WAtJC1)
procedure LisliWalk(Node %in out TREE;

Depth : out NATURAL;
Length i out NATURAL;
MaxLenqth :out NATURAL) in

LocalLength, ReturnedLength :NATURAL :- 0;
Lccal.Maxlength : NATURAL s- 0;
LocalDepth, ReturnedDepth t NATURAL - 0
Seq: SEQ.TYPE;
lid: IVAM;

begin
Seq:- LIST(Node);
LocalDepth :- 0; Looca1Lenqth :- 0; LocalMaxLength :-0;
w.hi2* riot IS-E4PTY(Seq)
loop

Ea! :- HEAD(Seq);
NodeWalk(Nd, ReturnedDepth, ReturnedLength);
Local~ekxlenqth a - Maximum(rA Ll'axlenqth, ReturnedLength);
LocalLength :- LocalLength + ReturnedLength;
LocalDepth s - maxiuaum(LocalDepth, ReturnedDepth);
Seq t- TAIL<Seq);

we loop;

Depth a-Localflepth;
Length a-Loca1Lenqth) *
Maxerngth :- Localjlaxlength;

and Liaiwalk;

Figure 4-7: Procedure Ustwalk

Section 4.3 / Page 78 A Pretty-Printer for ADA

4.3. Second Tree Walk to Generate Formatted Text

WALK2 walks over the PP_DIANA structure producing formatted source. This

pass is similar In structure to the tree walk described In Chapter 2 in that It

creates the source as It walks the PP_DIANA structure. It Is different In that It

uses the operations supplied in FORMAT to make formatt'ng decisions as It

proceeds.

The package specification for the second traversal is repeated below.

- Package to perform the second walk over the tree.

with PPDiana; use PPDiana; - DIANA package, for pretty printing

package WALK2 is
procedure WLK2(T: in TREE);

end WALK2;

The package body for this package is very large. There are approximately
160 mutually recursive procedures used to traverse the tree. The package body
Is provided In Appendix B.

There Is a procedure for nearly every DIANA node. and procedures for many

of the DIANA classes. In particular. not every DIANA class is represented by a

separate procedure. Classes consisting of one node do not appear: Instead the

procedure for the node is used. (These cases are easily recognized In DIANA

-- the class that contains only the node "foo is named °FO'). Further, the

nodes in the classes ID and OP do not have separate procedures. These nodes

can be processed by the procedure for the class DESIGNATOR since all nodes In

this class have the Ix.symrep attribute and the only text associated with the node

Is the lexeme contained In Ixsymrep.

Appendix B contains the package body for WALK2. Also. a few of the

subunits for the stubs In the body are Included In this appendix.

The naming of the procedures In the package is straightforward. The

procedure that produces formatted source for the node too Is preceded by the

prefix "dp_" to produce the name of the procedure: "dp_foo'. Procedures for

IDL classes derive their name similarly from the class name. Class FOO Is

processed by procedure "dkFOO.

Recreating Formatted Source Section 4.3.1 / Page 79

4.31 . Use of DIANA Operators

The ge l node operations (SONI. SON2. etc.) are used for the first pass

over tree. During the second pass the tree walking procedures are more

Nflc and consequently the specific DIANA node operations, operations that

. address attributes by name (e. g.. ASEXP). are used. (The use of both

traversal methods Is driven by the design goal of stressing the package Diana as

stated in Section 1. 1 on page 5.)

In general. there are two operations for each attribute, that is two sub-

programs defined In the package PP.Diana. The operations are named as the

attribute, so there are two subprograms associated with attribute too.

procedure P0 (t: in out TREE, v: in TREE);
- This procedure sets the too attribute in the node "t"
- with the value "v"

function O0 (tt in TREE) return TRE;
- This function returns the value of the too attribute of
- node "t"

The attribute as.jist Is a special case. The function LIST returns the value.

a sequence, of type (SEQTYPE. Sequence types are handled using the

operations HEAD. TAIL, and IS-EMPTY as previously described in Section 4. 2.

The pp__ attributes are accessed using similar operations, described In

Section 4. 1.

4.3. 2. Example WALK2 Subunits

In this section we present two sample subunits from WALK2. For purposes of

comparison we reconsider the reconstruction of label Identifiers and task types

that were first Introduced in Chapter 2

4. 3. 2. 1. Label Identifiers

All Identifiers are processed by a common routine.

jpz odure dkID(Nodes in TREE) is

- dk_3D is used for all identifier nodes, including OEF .D, and USED_ID
- since all elements in the class have only one attribute of interest,
- they are all processed by a single procedure

begin
Identrorm(LXSYMREP(Node))

an dk_ED;

Section 4. 3.2. 1 / Page 80 A Pretty-Printer for ADA

In the final design. the treatment of the labels Is merged Into the procedure
that handles sequences of identifiers. Here a check for the type of the node
determines If the Identifier Is to be bracketed. In addition. soMe formatting
decisions are made. The length of the sequence Is compared with the remain-
Ing space on the line. If there Isn't enough space for the entire sequence,
then each Identifier Is placed on a separate line.

procedure dp...Ids(Nodet in TREE) Is
Toolong iBoolean;
Seq i SEQ..TYPE;

- when Toor.ong is true put each identifier on a separate line.
- Checks for labels,* anid brackets labels.
begin

TooLong :m 3ax..td.Width <PPCHAS(Node);
Seq s- LZST(node):
If KID(HEAD(Seq)) - dn...label..id then

MddTezct("W)
dk.3D(HEAD(Seq));

dlLW(HEAD(Seq));
end if;
Seq :- TAIL(Seq),
while riot ISJ2IPTY(Seq)
loop

if KINDMEAD(Seq)) -t.label..id then
if TooLong tben MewLine end if;
AddTOt("")),
dktD(HEAD Seq));

if TooLong then NewLine end If;
dk.3D(READ(seq));

end if;
ead loop,

4. 3. 2.2. Task Types

The procedure that prints all type declaration must determine If the type
specification Is a task declaration. It It Is. then the keyword "task' must be
printed. The procedure below Is very similar to the procedure In Section
2. 2. 2 on page 35. The difference Is that the specialized output routines
ResForm and AddText are used to create the output line.

Recreatinlg Formatted Source Section 4.38.2. 2 1Page 81

procedure dp..Type(Nodes in TRER) is

begin
If KIII(AsTypE...SPEC(Node)) - dn-~aok.spec then

3.eufozB "task")
end If;
Rssroru("type)
dILID(AS.D(Node));
dp..yar...(LtVA&S(Node));
ReaFrtUm(" is '*))
dIL.T!1!....sp~C(AJTYPE.SPEC(Node)) j
Addre2&("J")

end dp-lTYPO;

Appendix A /Page 82 A Pretty-Printer for ADA

First Traversal Appendix A /Page 83

APPENDIX A
FIRST TRAVERSAL

This appendix lists the ADA package WALK I that contains the procedures to
perform the first tree-walk of the DIANA tree. The discussion of this package Is
In Section 4. 2.

A. 1. Package Specification

-Package to perform the first walk over the tree.

with PP..Dianas use PP-.Diana; DIANA package, for pretty prin.inq

picoceduze WAJC1(T: in out TREE);
end WAIJQ;

Section A.2 1 Page 84 A Pretty-Printer for ADA

A. 2. Package Body

- Package to perform the first walk over the tree.

PId~age body WPIIJQ is

SonCount : range 1..3;
Nest: Constant array (NODENAME, SonCount) of Natural

:-(dn._record _> (1,0,0),
dn, variantpart > (0,1,0),
dn.cond-clause => (0,1,0),
dn-alternatives • (1,0,0),
dn_alternative , (0,1,0),
dn-loop - (0,1,0),
dn-block -• (1,1,1),
dn-package-spec -, (1,1,0),
dn-task_spec - (1,0,0),
dLaccept (0,0,1),
dn select , (0,1,0),
dnqelect_clause • (0,1,0),
dn-cond-entry - (1,1,0),
dtintimed_entry - (1,1,0),
others - (0,0,0)),

Char : constant array (NODE-NAME) of Natural
s- (dn-pragma -, 9,

dn-ara aocs - 1,
dn-constant 14,
dr.var - 4,

dncode -0)

procedure ListWalk(Node : in out SEQTYPE;
Depth : out Natural;
Length : out Natural;
MaxLength : out Natural);

procedure NodeWalk(Node : in out TREE;
Depth : out Natural;
Length : out Natural);

procedure Walkl(Tt in out TREE) is separate,

procedure ListWalk(Node i in out SEQ_TYPE;
Depth a out Natural;
Length i out Natural;
MaxLength i out Natural) in separate;

procedure Nodeval.k(Node in out TREE;
Depth out Natural;
Length : out Natural) is separate;

en VALJU;

First Traversal Section A. 3 IPage 85

A. 3. Subunits

separate (WAIJKl)
pro~durelki(Tt In out mt k.) is

Depth: NATURAL;
Length: NATURAL;
Naxlernqth t NATJRALs

begin

- the root is a compilation node, to be treated as a list
- Lietwalk returns the nesting depth -Depth
- the number of chars -3 Length
- and the size of largest coup...unit -~MaxLength

ListWalk (T, Depth, Length, MaxLenth),

PPCHAJRS(T, Length);
PP.JMXCHAS(T, MaxLenth),
PP... NDEKT(T, ph;

eOW WMJQI;

waelarate (WAIJKl)
procedure Lie twaflk(Node : In out TREE;

Dept.h : out NATURAL;
Length : out NATURAL;
MaxLength : out NATURAL) is

LocalLength. ReturnedLength : NATURAL : - 01
Localxaxlength NATURAL :-0;
LocalDepth, ReturnedDepth :NATURAL :-0;
Seqt SEQ...TYPE;
Rd: TNPZ;

begin
Seq:- LIST(Node);
Local.Depth t- 0; LocalLength s-0; Loca]MaxLength :-0;
wil not IS...mPTY(Seq)
loop

ad :- HEWD(Seq);
Node~alk(ld, ReturnedDepth, ReturnedLength);
Loca13axlenqth : - Maximwm(LocalMaxlength, ReturnedLength);
LocalLength t- LocalLength + ReturnedLength;
LocalDepth : - Maximum(LocalDepth, ReturnedDepth),
Seq :- TAIL(Seq);

ad lop;

Depth t- LocalDepths
Length : - Localrength;
MhxLength : - LocalIPaxlength;

own ListWalk;

Section A. 3 IPage 86 A Pretty-Printer for ADA

VrOGOMSdr NodeWalk
(Node :In out TREE;
Depth zOut NATURAL;
Length - mt NAlTURAL) in

LocalDePth. ReL,,,.-edDePih z NATURAL oi 0
Locaflength,ReturnedLengthi NATURAL 0;
Local~axlength :NATURAL :0;
'WhichSon iTREE;

cae ARITY(node) is

AeulayDepth t- 0; -leaf nodes h-.ve zero nesting
came KIND(node) is

when dn-and~then I(.)-
LocalLength t- Char(KimD(Node))

when dn.nurericliteral a)
EsocalLength t- Laength(LKNUMREP(node)) +

Char(KIND(Node)),
when others

LocalLength :m Length(LYSYMNEP(Node)) +
Char(KLND(Node));

end case;
when, unary I binary I ternary -

for Son in unary .. ARITY(Node)
loop

case Son in
when unary

WhichSon :-SONI(node),
when binary

WhichSon i- 50N2(node),
vwn ternary -),

WhichSon : - SON3(node);
ew4 camel
NodeWalk(WhichSon,RturnedDept,Returnedlength);
Depth :- Nax(LocalDepth, ReturnedDepth +Nest(KIND(noe,Son)):
LOcalLsnqt'h :- LoCa3.Lenqth + Returtne4Lengtb;

end low;:
when arbit~rary

Listwalk(Node,ReturnedDepth, ReturnkedLengthn,Localnaxlenqth);
Depth % - ReturnedDepth + Neat(KJIND(Noe,)
Length s - ReturnedLength + Char(KIND(Node));

-set value of pp..maxchars
P2__AKXZHARS(Node, Locali~axlength);

end case;
PP,..CHARS(Node, Length); -set value of pp-chars attribute
Length :- LocalLength;

end Nodefalk;

Second Traversal Section B / Page 87

APPENDIX B

SECOND TRAVERSAL

This appendix lists the ADA package WALK2 that contains the procedures to

perform the second tree-walk of the DIANA tree. The discussion of this package

Is In Section 4.3.

B. 1. Package Specification

- Package to perform the second walk over the tree.

with PPDiana; ue PPDiana; - DIANA package, for pretty printing

Package WALK2 is
procedure WALK2(T: in TREE);

end WALI2;

B.2. Package Body

- Package to perform the second walk over the tree.

package body WALK2 is

procedure Walk2(T: in TREE) is separate;

- procedure stubs for the second traversal
- organized by Ada LRM chapter

- 2. Lexical Elements

proedure dpvoid (Node: in TREE) is searte;

2.3 Identifiers, 2.4 Numeric Literals, 2.6 String Literals

prxcedure dk_DESIUGMTOR (Node: in TREE);

- 2.8 Praqmas

procWhze dp.pragma (Node: in TREE) in separate;

procedure dp..param..assoc_9 (Nodes in TREE) is Meperate,

3. Declarations and Types

- 3.1 Declarations

procedure dkLDECL (Node in TREE):

- 3.2 Objects and Named Numbers

Section B.2 / Page 88 A Pretty-Printer for ADA

procedure dkOBJECT_DW (Nodes in TREE),

proedure dk..PVOID (Nodes in TREE);

procedure dpconstant (Node: in TREE) is separate;

procedure dp..Sax (Node: in TREE) is separate;

procedure dpnumber (Node: in TREE) is separate;

procedure dp-id-s (Node: in TREE) is separate;

- 3.3 Types and Subtypes
- 3.3.1 Type Declarations

pro edure dp.type (Node: in TREE) is separate;

procedure dk_TYPESPEC (Node: in TREE);

- 3.3.2 Subtype Declarations

procedure dp.subtype (Node: in TREE) is separate,

procedure dksubtype-indication (Node: in TREE);

procedure dp-constrained (Node: in TREE) is separate;

procedure dk-constraint (Node: in TREE);

- 3.4 Derived Type Definitions

procedure dp-derived (Node: in TREE) is separate;

- 3.5 Scalar Types

PCedure dkRANGE (Node: in TREE);

procedure dp_.ange (Node: in TREE) is separate;

- 3.5.1 Enumeration Types

procedure dpenun_literals (Node: in TREE) is separate;

procedure dkXNUILLITERL (Node: in TREE);

proedure dpdefchar (Node: in TREE) is separate;

- 3.5.4 Integer Types

procedure dp.integer (Node: in TREE) is separate;

- 3.5.6 Real Types

- 3.5.7 Floating Point Types

procedure dk_.PANG._VOID (Node: in TREE),

procedure dp-float (Node: in TREE) is separate,

7AA28857 ADIANA-DRIVEN PRETTYPRINTER FOR ADAM TARTAN LABS 2/9L
INC PITSBURBGHPA K 0BUTE ET AL 22 FEB 83 TL83 3

UNCLSIID MDAAA3-82-C 0148 FG92 N

SOMAEONEI Emon

Eu...... 6

l gil 4 2

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-19%3-A

Second Traversal Section 5.2 /Page 89

-3. 5. 9 ?~m2 Point Types

9908oei dp..fixod (Nodes in TME) in sseveate8

?coomfum dp..amry (oe I 1i TRE) is seammte;

Wto~d~edp-dscft...ran,.... (Iode i TR-)1 searates

pmamdeze DCWPM (Nodes In TRKE)u

p~ooodmdp-.index (Nodes In TREK) is segarate;

-3.7 Rmocord Type.

pgomdue p..record (Node: In TREE) is meaartep

procedre -LQW (Node: in TREE)$

ProDure fnuU...owa (Modes in TREK) 1n Dewazatei

-3.7.1 Dur~iat

proedredkLVAR..S (Node: in TREE)

procedure dp...Var.. (Nodes In TREE) Is separate,

-3.7.2 DifCrindnant Constraints

procedur dp..dscraAqgate (Nodes in TPEK) in searatei

-3.7.3 Variant Parts

proedue dp...vaiant..part (Node: in TREEC) is separates

procedure dp...variant-.. (Node: in TREE) In separate;

procedure dp...choioe..s (Node: In TRE)s separate,

99o0e96M dp..yaxlamt (Node: In TREK) is sepazatel

procedure dp...inner..reord (Node: In TREE) 18 separate,

procedume dklCHaZ (Node: in TREE);

cedure= dp-others (Nmode sIn TREE) 18 seiparate;

- 3.60 Access Types

pmoedure dp-aooass (Nodes in TRM) Is separte,

-2. 8 . ftmete TYPe DeClartilons

pzocedur dk-TPZSIU (Node: JA TM)p

.9 DeclaratIve Parts

Smucewe dkr (No0de: In TME),

Section B. 2 / Pago 90 A Pretty-Printer for ADA

ummedpL.tm~ (Node: I ITI) Is eseas

-4. Names an zqwemgj

pz~oftmz dkJWM (Nods it TRW);

COaeD&M Op.Used-char (Hodes in TiEE) Is wisparate,

- 4.1. 1 Indexd Comonents

proedu d3MW-S (Node: In TME),

£eocedazs dp..eWW... (Node:ts InTM) in weezaate,

Dcamdus p...ndmd (Node: In TEE) is .emet

-4.1.2 Slices

pinooeduze dip..slice (Nods In TRE) is separate;

-4.1.3 Selected CaWOVIsnto

pzoedzsdp-Selected (Node:s InTEE) in asterats,

Sgooed P-ll (Node: InI TREE) is sipaEate;

-4.1.4 Attributes

paedure dp..attribute (Node: In 'iEE) Ise separats

proedure dp..attribute-.call (Nodes in T isE Ismiwatep

- 4.2 Literals

- Refer to 4.4.C for n1UMsriC..literal, strinig-.literal,
- and nult-acce.
- Refer to 4.*1 for caracter..1teral.

- 4.3 Aggregate.

Vzooindz dkW (Node: s InTRU);

peoaelidp-aggregate (Node:I In TRIM) Is separate;

peoei~sdkLDWAB8OC (Node: in TFEE);

Jroe~zedip..nmed (Node: s TEEM) Is impsztsu

-4.4 upsions

gtociug dpinary (Node: in TE)Is sepawate,

ptoedee dLRIXIM.OP (Node: In TMRl

(groadinus pAnd-tb (Nodes In TME) JA separate,

puomuxedip..Or.els (Nods In TM) Is uepsates

Second Traversal Section B. 2 / Page 91

tamO06=*T !k.M& (Nodes In TM);

aaM mwe dpaberhip (Nodes In TM) In separate;

,aomm d ERnHwZ0r_ (Nodes in TRW);

.4a Ueze 4p..n.op (Nodes :ia TRU) 1- usp.ate

IaeGums 4p.not-in (Nodes in TR) is separate;

pKaeduze -P.arontheeized (Node, in R) is separate;

vM O4 u dp.numeric-lie±ral (Node: In TREE) is separate;

MR dMime dtpstring-._±leraL (Nodes In TREE) is selazate;

Iamre dpi.null...acc.,s (Node: in T) is separate;

-4.5 Operators and Msres sion Evaluatlon

- 4.6 Type Conversions

vI-A"mUMB dpoonversion (Nodes In TREE) is separate;

4.7 Qualified v rssons

prooduze dp.qualftied (Nodes In TREE) is separate;

4. Allocators

Dromiu"_e dp.allocator (Node: In TREE) is separate;

-S. Statements

5.1 siWlIG and Cowpound Statements - Sequences of Stat e ments

opgas dp-stm.., (Nodes III TREE) IA spea~te;

peoeduze dkpBI (Node: In TME);

DroaeM mm dplabeled (Hodes In TM) Is Separate;

moonde ft-rall-sta (Nodes In TM) 1M separate;

- .*2 ARINInt Statement

E mpg 1 dp_&Mes (node, In TM) s wagazme;

- .2 if Statmnts

4edp..if (Nodes In =) In sepaoate;

gauaa. dp..Am-cause (Nodes In T) s .sprates

- 4ae Statements

d€CeM (Node: In T) Is separate,

Section 8. 2 / Page 92 A Pretly-Prlnter for ADA

u0a~n r m- " etateuttiv.. (Sodet iIn TM) SAa meaal

jiaeie diaterrative (Nodes In M) Is snegeats

- 5.5 LOOP Statemnts

gauamMe dpnm8til (Nodes I& TW) IS MSPezate,

j~ue~edkX ZAM!OU (Nodes In !3u)s

w n As . OAp-..1oP (Node IIn TMK) is mepezafte

~auedp-jor (Node:- in in) Im 9.qmzmte,

pe~emedopieverme (Mode, In !RU) Is separate;

pmm~xe dpvilo (Nodes I. TMn) Is .e~S

-5.6 3lo* Statments

m~fe dpjilock (Node, tIn TMZ) Inmezae

-5.7 lbdt Statemnts

w esaeVA LVDZD (Node: In YiM)u

~a~edp....t (Node: tIn YiM) JA u9mae is no nai giveun

-5.6 Return Statemnts

own? Nm apzeatuun (Nodes In Y3)is emae

- .* Goto Statements

~on p-gatc, (Node IIn Tim) Is u.Waafte

-6. "orp ogw

-6.1 WSbUZl1 Declartions

Smoade ak mBPAGPk*; (Node, Itsn M)S

.1 ~om p...ubprogoodecl (Node: in Yin) Is u9g-J's

jina~edk.JUUW...U=~ (Nodes In 7Mn)i

-prqw4d, and fargummtJ..1 only cocur in the jpz teined environment

pesade .Lini (Nodes In Ym)j

pe~epu roedure (Node: In Uw) In uqmts

R-~do-Amnotioe (Node: In YiM) Is negezate,

dpmpz=L (Node IIn TOM) Iinszu,

(ecam - k_=M (Nodes In I~

pssus~ In (Modes In YI=) Isugam

Second Traversal Section 5.2 / Page 93

t - D 0wI Op-iftuA (NodeI Is a) Iaes

_dp.out (Nodes a TRI) Is Iwemzate

-6.3 3 Subprogrmn bodies

wn m-Wms IVi 3Oi (Node (In TRICE)

Do Miam dp...ubpocgaabod (Nodes In TE)Is separate;

- 6.4 SubPtognm Calla

mzom isa _prpooeduze-call (Mode: in TREE) i separate;

]_mAIe dp.functioan..ca (Node: In TREE) is sepazatel

Pruoedaz dkLPIDMLAAOC (Node: In TREE);

D~oc %no dp.assoc (Nodes In TIE) In eparate;

r ommMO d3L-lM3L (Node:r In TREE);

-7. PaCkags

-7.1 PaCkage tzUCtUre

oeppackage.deel (Nodes in TREE) is sepazate;

Prcedure dkLPACAW-DEV (Node: in TREE);

_dppaeCka eg oec (Node sin TREE) Is separate;

poedsws pOpdeel- (Mode: In TREE) is sp zate;

procedure dP...packags)ody (Modes in TREE) Is @operats

- 74Private Type and Deferred Constast Declarations

prooedurs dp..privatra (Node: In TRICI) Is eparats;

lpirnelmze dp...Lprivate (Node: In TE)Is swarats,

-- . VisI bility Ruleli

-. *.4 Use Clues

mygm adp. _in.s (Nods In IR=) is separate;

McoaedU dp_um (Nodet in TRIC) J ampa

-- .Sf mi"n DiclastoI

gposasau dpxenums (Nodes In TmIC) Is umtep

-9. 1 a

9 * 'h Selflotlos ad Tat Odle

Section 5.2 / Page 94 A Pretty-Printer for ADA'

St, uad..acl (odes in M) i I

j~ edp.tas.dm _ (Mode t In TM) Is S--1a

~a~uu B C K"'t -VOID (Nodes In !U) s

Ism mua dp ,jo-tas3Aoody (Hodes in epMt I

9.5 Entries, Intzy Calls and Aocept Statements

3m mre dkjUcW..ANL ID (Nodes In TRIM);

ry.e~e dp-entry (Node sIn !3u)4 Is -SmyatsI

Sindawe fentzy(all (Node t'In TR) Is Szate

M e .. ompt (Node, sin a TM) epmsej

- 9.6 DelaY Statemnta, Duration and Tim

ZmwFue apdelay (Node: in in) ,n I u fzts

- 9.7 el1Ct Statmnts

- 9.7.1 SelectiVe Iftits

J Rim dp..lect (Node: In TR) In separate;

-=o@&=*, dpue.lectclause.. (Mode, in !r3Z) Is Emcmeats

Ivoame dp.lect.clause (Hode: in Y) In ioeate:

Mmde kM (Nodes Ia Tm)

jnmx ~e dp.atezainate (Node: In TM) Is Sinwstsi

9.7.2 Conditional Intyz Call.

m awo dpcondentxy (Nodes in MUM) Is -Innm am

- 9.7.3 Tind gntry CLls

10 -aeuedLtlmak.ntmy (Node: In Ilk) In 0 v 'I~

- 9.10 Abort Statements

ue _dpabozt (Node: in ,M) Is -mu -

10. izogrm Structure and Comilation issues

10.1 .lation Uit - Library Untits

- d4P..OGOI~Ation (Node: IIn TMl) Is I~ts

(ginhe _dkUL= OW (Noe: in 2M);

amm~ #s (Node, in ,n) n qmm

-

Second Traversal Section B.2 /Page 95

t -, XDu apcwui (Nodel In TM) 1n separate;

-COnteXt Clauses - Withb Claus

gcondk -CDNWWMLfI (Nodes In TI);

~inadm4P..Oontext (Nodes In TRU) Is smpas"Ie

-- e m dp..with (Node: In TMW) Is separate;

-10.*2 Subunits of Compilation Units

JP o fp..subunit (NOde s1I TRWM) Insaeperatel

0080UM dkSUDINITDOD (Nodes In TRW)

RMOCO&Mx dp-stub (Nodes 1n TMW) Is separates

- 211. tweptions

- 121 Mmomption Declarations

Pcommz ft2LEwI'On.w (model in TME),

prOLomiuz dp-*=ption (Nodes In TME) Is separate;

-11.*2 xxomptlon Handlers

- 13 Ratse Statments

pro~dmdp..raise (Node: In TMW) la separate,

-Ia. Generic vtoqrill Units

- 2 .1 Generic Declarations

proudredkJEZCJEAOR (Nodes In !M~

3Eoamdip.generic Ins 1 TRW) Is sepazatel

j~ooadi p noeri-Peas (Node: In TR) s earate,

weomi dkGMuzc..PARAa (Node: 13I TiW);
gioscen dkIFJNumkmURWW (Nodel In TME)s

g~e dpjou (Nodts In TRW) 1w seprate,

,goue p...n..defaul(Nd:1TR)sserte

prooem 3§W4TZ3.A13 (Nodes In TU)I

~mem dPjfOzil-dsot (Nodes IS TMW) $A separates
~um *Jo l.Jiit (Node: M3TW" 8 ueue

fO UB*s ~deDMIn ljIoa (Mf: Ia TRW) IS MspMate,

yeedim *pEo=&In~int (ode IS T) $A sparte,Ift ___ -M ssgme

Secfon 8.2 / Page 9 A Pretty-PrInter for ADA

k - 12 .3 Generic Instantliation

~ sdp_,;generic-asocms (mode: in TE) is sqpezae;

DBEOadum dp_.nstantiation (Nodes in TRE) i separate;

gmooeaur jidKnE=zcAsuoc (Mode: in TREE),

13. Representation Clauses and

- IGImentation Dependent Features

- 13.1 Representation Clauses

procedum akRU (Node: in TRm);

- 13.2 Length Claum
- 13.3 wmwration Representation Clauses

Promedre dpsie._xep (Node, in TREE) Is separate;

13.4 Reoord Representation ClauM

oeduze dp.alignment (Nodes in TREE) is seperate;

PoCedure dp..xoW.xep_. (Mode: In TREE) 1 Seperte;

Procedure dpcomp.rep (Nodes in TREE) U. sWaVte;

- 13.5 Address Clauses

prcedure dpaddress (Node: in TRE) is sepezate;

- 13.9 aS tine Code Insertions

PocedAure dpcode (Nodel in TRE) is seeate;

8.8. Subunfts

smt~e (IWI)

l~procedr IKU2(Nodes In out TR) i,

- he rooc node wit be a comilation node

begin
Oa..oampilation(Node);

14 VI~2

IDL Refinement of DvANA for Pretty Printing Section C /Page *7

APPENDIX C
V IDL FIEFINEMENT OF DwaN FOR PREMt PRINTING

This appendix lists the refinement of DIAA that Is used for the pretty printer.
The refinement adds three attributes to DMAA that are useful for formatting the
recreated ADA source. The attributes are discussed In Section 4. 1 on page 63.

Sbzucture PPDipana, Reines Diana in

-Pretty Printer Refinement

-Version of 1993 February 22

-2. Lowliml Zlemnts

-2.*3 Identifiers, 2.*4 Numric Literal1s, 2.*6 String Literals

-2.69 PU~

1"Cages M3 pp..cfaret Integers

pam-assoc-~s -s, pp-hares Tnteger,I pspmxcharst Integers

-3.* Declarations and Types

-3.*1 DecAlarations

-3.2 objects and Maned numbers

Goltent -pp...charso Integer;

-e pp...harst Integersi

mi - -jpp..chazs.i Integers

constjA - W...haru a Integers

mer ~~b pp...charst Integer

nm~erid -- pp....harst integer

id~- pp...harst Integer,
pp.pax~harst Integers

- 3. *3
ty e a d Subt pe .

(type- pp..ciars Integeri

Appendix C / Page 98 A Pretty-Printer for ADA

1-typeid Mb W-..Chmzs iItgr

- 3.*3.2 Subtype Declarations

subtype -3o pp..charm i Integer;

subtype- jpp...chars i Integer;

constralined - ~ pp-.charu:i Integer;

-34Derived Type Defini1tion*

derve -jpp-.chars i Integer;

- 3.5 Scalar Types

range M). pp-jchars i Integer;

- 3.5.1 Rniration Type.

enunj..iterals~u- pp-jdaars:t Integer,
Ipp..Naxchars r Integer;

en-id'3 pp..charms Integer;

def...daar -)' pp-chars i Integer;

- 3.5.4 Integer Types

integer mi. pp....carst Inateger;

- 3.5. 6 Real TYRes

- 3.5.7 Floating Point Types

float -3 w.A-Cars: Integer;

- 3.5.9 Fixed Point Types

fixed M- p-hars: Integer;

- 3. 6 Array Type

array A3 Ipp....hars i Integer;

ducrtxage..s MI, pp...chars i Integer,
jppgw.mcarm Integers

ir~d 'l]~pp..chars a Integer;

- 3.7 lecord Types

iSoord pp wdharst Integer,
pp..harsa Integer;

(AL-CM]PPohars. Integers

aa.id30p~as IntegeIF$

I DL Refinement of OWEA for Pretty Printing Appendix C /Page 99

- 3.7.1 - &nunat

vareA Mb pp..haieuI Integer,
ppWA~wxs:t Integer;

dscrmt...id -pp...charsti nteoeW

- 3.*7.2 DiSCriminant Constraints

dscazut..aggregate mi pp-charst Integer,

-3.7.3 Variant Parts

variant~art m3 pp-..chars Itgr

vaziae.-s upp..charst Integer,
pp-wmhars: Integeri

varoiant pp..chars Integer,

inne...eood -pp....chars: Integer;

varint pp-char Integr,

others-)ez pp...chars 2 Integer,

access -, ppcharst Integer;

- 381S I 1 ete Yype Declarations

- 3.9 Declarative Parts

itNIS ml pp....dars:i Integer,
pp-mamchars t Integer;

- 4. llme and Mrvessions

-4. 1 Ninme

se&..oblectJ-ial ppcasi Integer;

'aee&.nm...id M0 Ipp....caxs Integer;

%ase4.btid ' pp-.ars t Integer;

~UeG..OP "I]wPchars I Integer;

~ue4..ift-.op - ~ pp.cairs I Integer;

Ijmecctma MI. pptal Integer)

-4.1.1 Xudined ccuants

Appendix C / Page 100 A Pretty-Printer for ADA

pp...chaze i Integer,
jpp.X9OVCharsz i nteger;

±ndmd -W pp-.charst 1nt.gr,

- 4.1.2 Slices

slice -)]pp..cars: I nteger;

- 4.1.3 Selected COMPOnents

selected -~pp..Cbars: Integer)

all -'pp-charu: Integer;

- 4.1.4 Attributes

attribute -~pp...charss Integer;

attributs..call - ~ pp..Chaxs: Integarl

- 4.2 Literals

- Refer to 4.4.C for numeric..literal, string..literal,
-and nul3_access.

- Refer to 4. 1 frcaace~ie

-.3 qgregates

aggregate -3, pp-charat Integer,
pp~paxchars i Integer I

named m) pp..chaes Inteqer;

- 4.*4 Expresmions

binary =3, p..ctas Inteqerl

and-then m3, pp..dhars a Integer;

riehip an) pp-..dars a Integer;

1.n-.op M). pp...chars. Integer;

parenthe.sed I~pp...charu: Integerl

"i"ic.literal -1, pp-.chars t Integer;

strinq.literal -Ipp....cars t Integer;

TVA1IIacess pp..chaxst S nteger;

- 4.* Operators and EZpression Evaluation

- 4.6 ?yye Conversoos

conmersion -3 Ipp..chars i Integer;

IOL Refinement of DwA for Pretty Printing Appendix C / Page 101

- 4.7 Qualified Exresions

qualified - pp-Char s InLegers

- 4.9 Allooators

allocator - w.._chazs: Integer;

- S. Statemnts

- 5.1 Simple and Compound Statsmnts - Sequences of Statements

et - pp-chars Integer,
pp-Na2aars: Integer;

labeled , pp-chars: Integer;

labelid - pp-chars: Int:eger;

- 5.2 Assignment Statement

assign -. pp-charss Integer;

- 5.3 If Statements

if -,pp.chara: Integer,
ppaxchars: Integerl

condclause -o ppchars: Integers

- 5.4 Case Statements

case -) ppcharezs Integer;

alternative_-s pp-chars: Integer,
pp.jmmahars: Integer;

alernatiVe -3 ppchares Integer;

- 5.5 Loop Statements

nammewtM - pp-chars: Integer,

loop - ppchars: Integer;

for - ppMhare: Integerl

reerse pp.dharus Integer;

iteratonid - pp-chazrt Integer;

%bile -3 pp_*au:M IntOger,

- 5.6 Block Statmnts

block -- pp.char:t Integers

Appendix C / Page 102 A Pretty-Printer for ADA

- 5.7 MIut 3tatements

exitpp..C*ars: Integer;

- 5. turn 3tateients

return -3, Wp-dars: Intaers

* -5.9 Ooto statamnts

goto M, Ipp-...arst integer;

G . Subproqrinw

.1subprogram Declarations

gui..program Cec. M, Wp-charst Integer;

procJA M) pp....cbas Integer;

function-jid -3. wpituta: Integer;

d -ap) pp-Aars I Integer

procedure -pp...charu: Integer;

function -3- pp...charst Integer;

paau-s 1pp...dars i Integer,
Ipp-mxcdharu: Integer;

in pp-Charst Integer;

in-..out pp-.chares Integer;

out -jpp...chars t Integer;

in-iA pp..charst Integer;

in...out..id -i pp-..chares Integer;

autid wi Ipp-chars Integers

- 6.*3 Subprogram Bodies

aubprogm 'a), pp...charus Integer;

-6. * 4 SuProgram CXa

procadure..oal W-&p.cArs Integerl

functiov-call - p.Charst Integer;

assoC -1 pp..Chars ainteger;

- 7. Packwgs

-7.1 Padta Structure

IDI Refinement of D~AN for Pretty Printing Appendix C /Page 103

pacage.Ac 41 pl-Chars 3 Integer;

packg...d pp-.chars a Integer;

packag-S.pec- pp-.chars: Integer;

decl-s - pp..ctars i Integer,
pp-pmxhars t Integerl

packagebody - pp~chars i Integer;

-74Private TYPe and Deferred Constant Dbelarations

private -% jpp..charsz integer;
ipIWVate W...harst Integerl

private.type..id -pp~charst ainteger;

Irivatetype.id -ppcharst Integer;

- 3. visibility Rules

- 0.4 use clauses

name-u M3 pp....cars: integer.
pp_=axcharg: r nteger,

use -pp..charss integer,
,pp..umxchars a Integer;

- 9.5 enaming Declarations

rename '0. p..Chars Integer;

-9S. Tasks

- 9*.1 Task Specifications and Task Bodies

task..Aecl -pp...chars a Integer;

tasiLewpec -pp..chars t Intager;

task.boy - pp-Chars a Integer;

tak...ody.id -j ppCharst Integer;

-95Entries, Entry calls arM Accept Statements

etry 7 pp-Ottare i Integer;

entZY id W3 pp-cars i Integer;

en*TrLCanl M30 qp..dars i Integer I

acocept p w.Aazu I Integers

-96Delay Statmeents, Duration aid Time

Appendix C I Page 104 A Pretty-Printer for ADA

delay -I pp.chazs, Zntegr;

- 9.7 Selot Statmnts

- 9.7.1 S31ctlove Waits

slect -, pchaxt: Xnteger;

3soe1ctaC2tis~ - WONSa : inteqer,
mi cmhavr: Integer;

select-_clause ,]pp_.cha Integer;

terminate - p-chares Integers

- 9.7.2 COnitional Entry Calls

cond..ontty -) pp-charsz Integer;

- 9.7.3 TYiod Entry Calls

timd-entry W. p._chazs: Xntegerl

- 9.10 Abort Statements

abort ,). pp-charu: Integers

- 10. Program Structure and ComplLation Issues

- 10.1 Compilation Units - Library Units

o ilation -% pp.nest Integer - naxt m nesting

ompilation -v ppcharst Integer,
pp.mohazse Integerj

pp..hazst Integer,
pp..panchmzs: Integer;

cxq._unLt pp.chers: Integer;

- Context Clauses - With Clauses

context ip pPchars: Integer,
pp-smodharst Integer;

With p W,..charsm Integer,
p-pwaxhaxe i Integer;

- 10.2 Subunits of Co ilation Units

subunit -o JP06"_t Integer;

Stub -30 p. ..oav: onteIerD

- U1. Mmooptions

IDL Refinement of OwiA for Pretty Printing Appendix C /Page 105

S11 1 =etio Declaratons

eucep9tionw IpAcaru a IntegerlI eptOS,~i -ppWchars: Integers
- 1.*2 IMaeption Handler.

- U1.3 Maise 3tatemnts

raise2 0-~]pp..cbars I Integerf

- 12. Cowenrie Program Units

- 12.*1 Generic Declarations

generic - pp..chars:i Integer;

generiojid -pip-.charst Integer;

generic..pezs.. -pp-Oharst Intege,
pp-jemxcharst Integer;

box pip-.charsi Integer;

EomU1l.sCrt vr pp-.chars i Integer;
foZE&L.f1lmd W3 W...chare i Integer;
foml...float -i pp...chars: Integerl
fComl..nteger - ~ pp-.charst Integer;

- 12.*3 Conwric Instantiationt

generic-.assocs-P Wp-charu: Integer,
pip..pmxharst Integer;

instantiation - ~ pp..chmzs:i Integer;

- 13. 74epresentation Clauses and

Implementation Dependent Features

-13.1 pAresentation Clause.

-13.2 Tength Clause
- 3.* 3 Inuamrtion RePresentation Clauses

simple-ZIP pp-aars aInteger

-13.*4 Reord Re 'setation Clauses

allirient - IM-Chams Integers

zeoori..re =* pw.Ahars Integers

(lJe. - pw.Aarsu# Integer,
SPW~ARst" Integers

GC - p..chers Integers

Appendix C IPage 106 A Prietty-Printer for ADA

(- 13.5 &dizese Clauses

=10su V pg...hWz:Integer,

- 1309 "Iins Cods Insertions

code "30 jppia=u ,integer;

- 14.0 Input-Output

- 1/0 procedure calls are not specially handled. ihey are
-rePresnkte byr Procedure or function calls (see G.4*).

- Predefined Diana Eiirosmnt

at-tr..A -JPP-Chaxvs Intiegers

pr~~~...1Aex i p.~au Integer,
sp-waoaru: Integeir;

Format Control Appendix 0 I Page 107

APPENDIX 0
FORMAT CONTROL

in this appendix we present the ADA p.ckage that contains the subprograms to

do the formatting of the reconstructed source.

D. 1. Package Specification

- Package that provides operations to forma: reconstructed Ada source

LineoLeth: - length of the output line
conant POSITIVE s 120;

type Column is - position on the line
range 0.. LineLngths

procedure - store Text into the output
AdMdat(Text: In String);

procedure - store an Ada reserved word
Msfozu(Toxt: in String);

procedure - store a commnt
Comorm(Text: in String)l

roaefur - store a program identifier
Identlorm(Texts in String);

funtin Remaining return Column; - unused characters in buffer
function Position return Column; - used characters in buffer
procedur NewLine; - output new line with indentation
procedure Indent; - increment from last indentation
ptmooduze Udent; - revert to previous indentation
procedure Sotlndent(Dost in Column);

goset indentation to Poe
amd VOW:k9

Page 108 A Pretty-Printer for ADA

[) A. Evans. K. Butler.
Diane Reference Manuel.
Technical Report TL-SS-4. Tartan Laboratories Inc.. February. 1988.
Revision 8.

121 J.D. Ichblah. B. Krlg-Brueckner. B.A. Wlchmann. H.F. Ledgard. J.C.
Hellard. J. R. Abrial. G. P. Barnes. M. Woodger. 0. Roubine. P. N.
HIlfInger. R. Firth.
Reference Manual for the Ada Programming Language
Draft revised MIL-STO 1615. July 1982 edition, Honeywell. Inc.. and

Cui-Honeywell Bull. 1982.

(31 B. Krieg-Brueckner. D.C. Luckham. F.W. von Henke. 0. Owe.
ANNA: A Language for Annotating Ada Programs.
Technical Report. Computer Systems Laboratory. Stanford University. 1982.

(41 J.R. Nestor. W.A. Wulf. D.A. Lamb.
IDL - Interface Description Language: Formal Description.
Technical Report CMU-CS-81-139. Carnegie-Mellon University. Computer

Sclence Department. June. 1982.
Revision 2.0.

I '

*/

